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A B S T R A C T

In nearly all mammalian species, newborn pups are weak and vulnerable, relying heavily on care and protection 
from parents for survival. Thus, developmentally hardwired neural circuits are in place to ensure the timely 
expression of parental behaviors. Furthermore, several neurochemical systems, including estrogen, oxytocin, and 
dopamine, facilitate the emergence and expression of parental behaviors. However, stress can adversely affect 
these systems, impairing parental behaviors. In this review, we will summarize our current knowledge regarding 
the impact of stress on pup-directed behavior circuits that lead to infant neglect, abuse, and, in extreme cases, 
killing. We will discuss various stressors that influence parental behaviors at different life stages and how stress 
induces changes in the neurochemical systems that support parental care, ultimately leading to its poor 
performance.

1. Introduction

In the wild, natural conditions are harsh, especially for helpless 
newborns. Adverse weather, predators, hunger, and even minor tem
perature fluctuations can threaten their survival. Without parental care, 
it would be nearly impossible for infants to grow into adults in most 
mammalian species. Therefore, “hardwired” neural mechanisms are in 
place to ensure robust parental behaviors are expressed the moment 
newborns arrive (Kohl et al., 2017; Kohl and Dulac, 2018). However, the 
mechanisms supporting parental behaviors could be affected by various 
stressors, decreasing the quality of parental care. In particular, stress 
during early life and pregnancy appears to have a long-lasting impact on 
parental behaviors (Davis and Narayan, 2020; Lupien et al., 2009). Here, 
we will first summarize changes in parental behaviors induced by 
stressors at different life stages, including pre-birth, infancy, puberty, 
pregnancy, and lactation (Fig. 1). We will then discuss our current un
derstanding regarding the neural mechanisms underlying the 
stress-induced decrease in parental behaviors (Fig. 2).

2. Stress-induced changes in parental behaviors

2.1. During early life

Exposure to severe stress during childhood — frequently referred to 
as early life stress (ELS) —has a profound and lasting negative impact 
across the life course (Baram et al., 2012; Bock et al., 2015; Fox, Levitt, 
and Nelson III, 2010; Gröger et al., 2016; Weinstock, 2008) (Fig. 1). 
Maltreated young are at risk of showing poor parental behaviors to their 
own young as adults, a phenomenon known as the “Cycle of abuse” 
(Michl-Petzing et al., 2019; Thornberry and Henry, 2013). This session 
discusses evidence supporting the intergenerational transmission of 
parental behaviors.

2.1.1. Before birth
Early life stress can be divided into stress experienced during the 

fetal stage and infancy. In the fetal stage, the stress experienced by the 
pregnant female can influence the developing fetus. In rats, exposing 
pregnant females to psychosocial and restraint stressors daily between 
days 4 and 10 of pregnancy significantly reduced the offspring’s nursing 
behavior and the time spent with pups when they became mothers 
(Bosch et al., 2007). In another study, Champagne et al. found that the 
offspring of stressed mothers (placed in Plexiglas restrainers for 30 min, 
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3 times/ day during the last 7 days of pregnancy) exhibited reduced 
licking and grooming toward their own offspring compared to the 
progeny of non-stressed dams (F. A. Champagne and Meaney, 2006).

2.1.2. During infancy
Stress during infancy caused by inadequate parental interaction also 

adversely affects later parental behaviors during adulthood. For 
example, compared with biparentally reared animals, monogamous 
prairie vole pups raised by the mother alone show lower levels of licking 
and grooming towards their young when they become parents (Ahern, 
Hammock, and Young, 2011). Kikusui et al. found that compared to the 
normally weaned mice, the early-weaned female mice show a lower 
frequency of pup licking/grooming and arched-back nursing when they 
become mothers (Kikusui, Isaka, and Mori, 2005). When parental care is 
completely deprived by raising the mouse pups in isolation via feeding 
tubes, the animals show markedly low levels of licking, sniffing, and 
retrieving behavior towards their offspring in adulthood (Afonso et al., 
2011; Gonzalez et al., 2001). Similar phenomena were observed in 
non-human primates. Harlow et al. found that female rhesus monkeys 
separated from their mothers at birth and deprived of early peer in
teractions exhibit reduced maternal behaviors and sometimes are 
abusive towards their infants, such as refusing to nurse, pushing the 
young away, crushing them to the floor and even attacking unprovok
edly (Arling and Harlow, 1967; Harlow et al., 1966). In humans, females 
who lose parents early in life or have strained relationships with their 
mothers tend to interact with their babies less (Hall and Pawlby, 1981; 
Minde et al., 1980). Individuals who were physically abused as infants 
are more likely to become abusive as parents (Parke and Collmer, 1975; 
Wolfe, 1987),

The quality of maternal care the infants receive also affects their 
future parental behaviors. In mice, individual females that exhibit high 
licking/grooming of pups and arched-back nursing (LG-ABN) are 
considered good mothers. A good mother’s daughter is more likely to 
become a good mother. Specifically, female offspring of low LG-ABN 
dams reared by high LG-ABN mothers exhibit high frequencies of 
parental care behaviors as normal high LG-ABN offspring. In contrast, 
females born to high LG-ABN females but reared by low LG-ABN 
mothers show low parental care (F. A. Champagne et al., 2003; F. A. 
Champagne and Meaney, 2006; D. Francis et al., 1999; Umemura et al., 

2015). Similarly, in non-human primates, female vervet monkeys who 
spent ample time interacting with their mothers as infants tend to 
behave the same way when becoming mothers (Fairbanks, 1989). These 
results suggest that early life experiences with mothers strongly influ
ence an individual’s parental behaviors later in life.

2.2. During puberty

Puberty marks the transition from a non-reproductive juvenile into a 
reproductively competent adult. In female rodents, the first external sign 
of ovarian activity, i.e., vaginal opening, marks the onset of puberty (~ 4 
weeks), while the first reproductive cycle (estrous cycle) marks its offset 
(~6 weeks) (Ismail et al., 2011; Mayer et al., 2010).

Stressful experiences during puberty can disrupt the estrous cycle, 
affect sexual behaviors (Bentefour and Bakker, 2024), and increase 
anxiety (Yohn and Blendy, 2017). But interestingly, certain stressors in 
puberty appear to increase instead of decreasing future pup caring be
haviors. For instance, male mice isolated for three weeks during puberty 
(5–8 weeks old) spent significantly more time interacting and crouching 
over pups and retrieved pups faster than group-housed males (Orikasa 
et al., 2015). Juvenile females exposed to trimethylthiazoline (TMT), a 
chemical found in fox feces, and an elevated platform under direct bright 
light show increased maternal aggression, as reflected by the decreased 
attack latency of an intruder during lactation (Cordero et al., 2013). 
However, given the limited research on the impact of stress during pu
berty on maternal behaviors, additional studies are needed to confirm 
the facilitating effect of puberty stress on caregiving behaviors in 
adulthood.

2.3. During pregnancy

Pregnancy is when the parental circuit undergoes many changes to 
support the emergence of parental behaviors during motherhood. As 
such, it is a sensitive period for experiences, both negative and positive, 
to influence later parental behaviors.

2.3.1. Physical stress impairs parental behavior
Restraint, which involves placing the pregnant females in Plexiglas 

restrainers for around 1–2 hours per day, in the late gestation (~days 

Fig. 1. Various stressors across life stages impact parental behaviors. The red and green arrows indicate impaired and enhanced parental behaviors, respectively.
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10–20), is a commonly used procedure to induce stress (Baker et al., 
2008; Smith, 2004; F. A. Champagne and Meaney, 2006). This paradigm 
consistently decreases parental behaviors, including licking/grooming 
(Baker et al., 2008; F. A. Champagne and Meaney, 2006; De Souza et al., 
2012; Maccari et al., 1995), arched-back nursing (Smith, 2004), nes
ting/grouping pups (Smith, 2004), crouching (Herrenkohl and Whitney, 
1976), pup contact (De Souza et al., 2012; Maccari et al., 1995) and pup 
retrieval (Herrenkohl and Whitney, 1976; Maccari et al., 1995). Expo
sure to stress during one pregnancy can impact parental behaviors for 
multiple litters, even if the females are not exposed to stress during later 
pregnancies (F. A. Champagne and Meaney, 2006).

Other stressors experienced during mid-pregnancy, such as foot 
shock or a combination of heat, bright light, and loud music, also 
decrease parental behaviors (Golub et al., 2016). Specifically, mice 
subjected to these conditions spend significantly less time in the nest 
grooming and nursing their pups (Meek et al., 2001). However, not all 
sensory stressors have the same impact. For example, Olga and col
leagues found that daily exposure to variable frequency ultrasound 
(20–25 kHz, 25–40 kHz, 40–45 kHz) throughout the pregnancy did not 
affect maternal behavior (Abramova et al., 2021). This may suggest that 
the parental circuit can withstand mild stressors. It is worth noting that 
stress applied to pregnant mice will also affect the fetuses and change 
the infants’ behaviors. Typically, stressed pups elicit stronger parental 
care (Walker et al., 2003). This may compensate for the mild 
stress-induced parental behavior deficits to some extent.

Overcrowding is another type of physical stressor that is likely to be 
experienced by animals under natural conditions. When pregnant fe
males are housed in a small cage with 4 male mice from gestation day 
14–21 (Moore and Power, 1986), the females show reduced anogenital 
licking of the pups compared to control females (Hillerer et al., 2011; 
Moore and Power, 1986). Consistently, the offspring survival rate is 
negatively affected by the population density in house mice (Ferrari 
et al., 2022; Lidicker, 1976; Southwick, 1955).

In humans, pregnant females in low-income countries face chal
lenges such as overcrowding and poor housing conditions. Over
crowding is significantly associated with postpartum depression (Gupta 
et al., 2013), which is a risk factor for hostile young-directive behaviors 
and child neglect (Lovejoy et al., 2000; Coussons-Read, 2013; Goodman, 
2007).

2.3.2. Environmental enrichment (EE) has a positive impact on parental 
behavior

While negative experiences during pregnancy impair parental be
haviors, positive experiences have the opposite effect. Female rats living 
in a large arena containing stimulating objects, such as ramps, tubes, and 
balls, and other females during pregnancy exhibit significantly 
enhanced parental behaviors compared to females living in a standard 
lab cage. They spend twice as much time licking and grooming pups as 
control animals and more actively hover over pups during the first 
postpartum week. In the maternal defensive test, EE dams exhibit three 
times the level of aggressive behaviors compared to the control group. 
(Núñez-Murrieta et al., 2021). This beneficial effect of EE on parental 
behaviors is observed not only in normal rats but also in rats predisposed 
to anxiety and depression (Rosenfeld and Weller, 2012).

2.4. During lactation

After giving birth, parental behavior truly begins. We can divide the 
stressors in this period into two categories. The first category includes 
environmental factors unrelated to pups, such as resource availability. 
The second category involves the pups themselves. The suboptimal 
health state of pups or their mere absence can act as potent stressors, 
promoting parental behavior to ensure the safety and survival of the 
young.

2.4.1. Pup-unrelated
Low resource availability can be a potent stressor during the lacta

tion period because high-quality parental care requires an adequate 
supply of food and nesting materials. The limited bedding/nesting ma
terials (LBN) model, introduced by the Baram lab, is commonly used to 
study how environmental stress changes parental behavior in lactating 
mothers (Gilles, Schultz, and Baram, 1996; Molet et al., 2014; Walker 
et al., 2017). In this paradigm, the dams are transferred to cages with 
bedding and nesting material sparsely covering the wire mesh floor from 
PND 2–9 (Avishai-Eliner et al., 2001; Gilles, Schultz, and Baram, 1996; 
Walker et al., 2017). Variants of this model include using approximately 
20 % of bedding material in a normal cage from PND 8–12 or inter
mittently from PND 1–7 (Moriceau et al., 2009; Raineki, Moriceau, and 
Sullivan, 2010; T. L. Roth and Sullivan, 2005; Walker et al., 2017). The 
most apparent consequence of LBN is the fragmentation of parental 

Fig. 2. Summary of stress-induced dysfunction in the oxytocin, estrogen and dopamine systems and HPA axis that impair parental behaviors. Green and red arrows 
indicate increase and decrease, respectively.
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behaviors, as reflected by the shorter bouts of pup-directed caring be
haviors. The mother leaves the nest frequently (Brunson et al., 2005; 
Demaestri et al., 2022; Gallo et al., 2019; Ivy et al., 2008; Lapp and 
Moore, 2020; Pardo et al., 2023; Rice et al., 2008) and spends limited 
time nursing, licking and grooming the pups even when in the nest 
(Dalle Molle et al., 2012; Demaestri et al., 2022; Gallo et al., 2019; Pardo 
et al., 2023). Resource-limited mothers also show longer latency to 
retrieve pups back to the nest and, in some cases, show abusive behav
iors towards pups, including aggressive grooming and kicking, stepping 
or jumping on pups, and transporting pups by gripping a limb (Blaze 
et al., 2015; Gallo et al., 2019; Rincón-Cortés and Grace, 2022; T. L. Roth 
and Sullivan, 2005; Walker et al., 2017).

Beyond limited resource-induced stress, chronic social stress (CSS) 
also affects the parental behavior of mothers. In one CSS model in mice, 
a novel male was introduced into the dam’s home cage for 1 hour each 
day from lactating day 2–16. The repeated home intrusion attenuates 
maternal care during mid-lactation and promotes maternal aggression 
toward a novel male intruder (Nephew and Bridges, 2011; Rosinger 
et al., 2021).

In humans, limited resources, i.e., financial hardship and social 
conflict (within the family or in workplaces), are major risk factors for 
postpartum depression (Pawluski et al., 2017; Westdahl et al., 2007), 
which is often associated with a weak mother-infant bond (Tietz et al., 
2014) and poor maternal care (Field, 2018).

2.4.2. Pup-related
The goal of parental behaviors is to ensure the well-being of the 

young. Thus, deprivation of pup access is a unique stressor, prompting 
the mother to search for the young and show compensatory caring 
behavior after the reunion, especially towards the missing pup 
(Burenkova et al., 2020; Zimmerberg et al., 2003). While acute maternal 
separation promotes parental behavior, chronic or repeated separation 
can negatively impact parental behavior. For instance, after 4–5 days of 
daily maternal separation, mothers frequently leave the nest and spend 
less time nursing the young (Demaestri et al., 2022) and crouching 
(Burenkova et al., 2020).

Mothers also adjust their parental behaviors based on the state and 
needs of their pups. When the pups are under stress, mothers enhance 
their parental behavior to relieve their discomfort. In the repeated 
neonatal pain model, the neonatal rats (P2-P14) are separated from their 
mothers for 15 minutes daily, and their rear heel is pricked with a 30-G 
needle. After the pup is returned, mothers lick the pricked pups signif
icantly more than handled-only pups during the first 10 min of reunion 
and, to a lesser extent, over the 90 min following reunion (Walker et al., 
2003).

Altogether, these studies revealed that stress experienced in nearly 
all life stages can impact parental behaviors. It could impair not only 
current parental behaviors, i.e., low LBN during lactation, but also those 
that will happen in the future, i.e., early life stress. However, pup-related 
stress is unique as it tends to increase instead of decreasing parental 
behaviors to improve the well-being of the young.

3. Mechanisms behind stress-induced changes in parenting 
behaviors

Parental behavior is supported by a developmentally wired neural 
circuit, with the medial preoptic area (MPOA) being a key node of this 
circuit (Kohl et al, 2017; Yu et al., 2020; Kohl and Dulac, 2018). The 
maternal circuit is under the modulation of several neurochemical sys
tems to ensure rapid onset and robust expression of maternal care 
(Fig. 2). Specifically, sex hormones, such as estrogen and progesterone, 
are vital for refining the circuit during pregnancy for maternal behavior 
initiation. Neuropeptides, such as oxytocin, boost the maternal care 
circuit to ensure behavior expression under challenging conditions. The 
mesolimbic dopamine reinforces the behavior by signaling the positive 
valence of pup interaction. In this section, we will discuss the 

importance of estrogen, oxytocin, and mesolimbic dopamine in pro
moting parental behaviors and review the impact of stress on these 
systems that leads to long-lasting changes in parental behaviors.

3.1. Estrogen

Virgin female rodents typically show aversion towards pups. During 
late pregnancy or lactation, females reduce pup avoidance and start to 
show pup-caring behaviors, such as grooming, crouching, and retrieving 
(F. Champagne et al., 2001; Numan and Sheehan, 1997; A. S. Fleming, 
O’Day, and Kraemer, 1999). This transformation is strongly influenced 
by sex hormone changes during pregnancy, with estrogen playing a 
particularly important role (Rosenblatt, 1994). Seminal studies by 
Rosenblatt and colleagues demonstrated that estrogen surge during late 
pregnancy enables the fast onset of maternal behaviors (Harold I. Siegel 
and Rosenblatt, 1975; H.I. Siegel and Rosenblatt, 1975), and later 
studies showed that parental behavior can be elicited in virgin rats by 
mimicking estradiol rise during pregnancy (Bridges, 1984; Doerr, Siegel, 
and Rosenblatt, 1981).

Numerous studies established the central role of MPOA in parental 
behaviors (Lee, Clancy, and Fleming, 1999; Numan, 1974; Numan et al., 
1988; Wu et al., 2014; Fang et al., 2018; Wei et al., 2018; Kohl et al., 
2018; Yoshihara et al., 2021). MPOA expresses abundant estrogen re
ceptor alpha (Esr1) – a nuclear receptor that acts as a transcription factor 
upon binding to estrogen. During pregnancy, estrogen acts on Esr1 to 
induce molecular, morphological, and physiological changes in MPOA 
cells, resulting in enhanced cell responses to pups and, ultimately, effi
cient expression of maternal behaviors (Ammari et al., 2023). When Esr1 
expression in MPOA is knocked down using siRNA, the maternal 
behavior is almost abolished, and in extreme cases, manipulated females 
display infanticidal behaviors (Ribeiro et al., 2012). Conversely, bilat
eral estrogen implants in the MPOA hasten the onset of maternal 
behavior in pregnancy-terminated primigravid (Numan et al., 1977) or 
ovariectomized and virgin female rats (Fahrbach and Pfaff, 1986). 
Optogenetic activation of Esr1-expressing cells in MPOA (MPOA-Esr1) is 
sufficient to promote parental behaviors acutely in virgin female mice 
(Fang et al., 2018; Wei et al., 2018).

Stress can modulate Esr1 expression in multiple parental behavior- 
related regions. Compared to offspring from high-LG mothers, females 
raised by low-LG dams express less Esr1 in the MPOA, and show 
decreased neuronal responses to estrogen (F. A. Champagne et al., 2003; 
F. Champagne et al., 2001). Similarly, post-weaning social isolation 
reduces Esr1 expression in the MPOA of prairie voles (Ruscio et al., 
2009). Chronic stress also causes reduced Esr1 expression in the nucleus 
accumbens (NAc), another brain region indicated in maternal behaviors 
(Numan, 2007; Lorsch et al., 2018). Beyond decreased Esr1 level, early 
life stress can also lower estradiol levels. Restraint stress (Ordyan et al., 
2013; Reynaert et al., 2016) and lipopolysaccharide-induced immune 
stress in mothers (Izvolskaia et al., 2016) decrease estradiol levels in 
female offspring once they reach adulthood. Given the critical role of 
estrogen in the onset of maternal behaviors, the early life stress-induced 
Esr1 and estradiol decrease is expected to dampen the activation of the 
maternal circuit, resulting in poor maternal behaviors in adulthood.

3.2. Oxytocin

Although not absolutely required, oxytocin (OT) has been found to 
enhance parental behaviors consistently. Intracerebroventricular (i.c.v.) 
(Pedersen and Prange, 1979; Pedersen et al., 1982) or intraperitoneal (i. 
p.) (Marlin et al., 2015) injection of OT can shorten the latency to ex
press parental behaviors in virgin female rodents. Similarly, optogenetic 
activation of OT neurons in the paraventricular hypothalamus (PVH) 
increases pup retrieval in virgin female mice (Marlin et al., 2015). 
Conversely, disrupting brain oxytocin signaling pharmacologically or 
genetically impairs maternal behavior (Jin et al., 2007; Leengoed et al., 
1987). Specifically, i.c.v. injection or local infusion of oxytocin receptor 
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antagonist (OTA) into the MPOA, ventral tegmental area (VTA), and 
medial prefrontal area (mPCF) all impair parental behaviors in lactating 
females (Sabihi et al., 2014; Pedersen et al., 1994). Furthermore, CD38 
knockout that results in impaired oxytocin secretion disrupts maternal 
care, which can be restored by subcutaneous injection of OT (Jin et al., 
2007). Recent studies using conditioning OT or OXTR knockout, opto
genetic and chemogenetic OT cell activation and inactivation reached 
essentially a similar conclusion: although OT is not absolutely required 
for maternal behaviors, deficits in OT system could delay the behavior 
onset in inexperienced virgin females or impair the performance of 
mothers in a stressful environment (Ng et al., 2023; Ragnauth et al., 
2005; Carcea et al., 2021). Similar effects have also been reported in 
male mice. Knockout of the OT gene in the PVH or genetic ablation of 
PVH-OT neurons significantly decreases retrieving behaviors and the 
duration of paternal care exhibited by fathers. Conversely, chemo
genetic activation of PVH OT neurons blocks infanticidal behaviors and 
promotes caregiving behaviors in sexually naïve male mice (Inada et al., 
2022). Oxytocin could exert its influence on the maternal circuit in 
multiple ways, including directly changing the excitability of 
OXTR-expressing cells (first-order modulation) (Osakada et al., 2024), 
changing the local circuit elements (e.g., inhibitory interneurons) that 
influence the principal output cells (second-order modulation) (Owen 
et al., 2013; Sato et al., 2020), or changing activities of other neuro
modulatory systems (third-order modulation) (Froemke and Young, 
2021; Dölen et al., 2013; Xiao et al., 2017).

In humans, oxytocin levels during early pregnancy and the post
partum period have been correlated to maternal behaviors, including 
gaze, vocalizations, positive affect, and affectionate touch (Feldman 
et al., 2007). Additionally, higher oxytocin levels are associated with 
attachment-related thoughts and frequent infant checking (Feldman 
et al., 2010; Feldman et al., 2007). Thus, oxytocin represents an 
evolutionarily conserved mechanism to promote parental behaviors in 
both males and females of various mammalian species.

Stress can suppress the oxytocin system at both the neuropeptide and 
receptor levels. In primates, for example, rhesus macaques raised by 
human caregivers without maternal interaction exhibit low central 
oxytocin levels (Winslow et al., 2003). Women who experienced early 
childhood abuse or neglect have significantly lower levels of OT in their 
CSF compared to women without such experiences (Heim et al., 2009). 
In rodents, female offspring of low-LG dams show reduced OXTR bind
ing in several brain regions, including the MPOA (F. A. Champagne and 
Meaney, 2007; D. D. Francis et al., 2002). Offspring of high-LG mothers 
with post-weaning isolation display impaired maternal behaviors and a 
16 % reduction in oxytocin receptor binding in the MPOA. In contrast, 
social enrichment enhances maternal behaviors and OXTR binding in 
the MPOA of low-LG offspring by nearly 20 % (F. A. Champagne and 
Meaney, 2007). The stress-induced changes in OXTR expression may be 
due to epigenetic modifications, such as methylation of OXTR gene 
(Perkeybile et al., 2019; Danoff et al., 2021; Hammock, 2015). These 
results support that stress experienced early in life can shape the 
oxytocin system and impair parenting behavior in adulthood.

3.3. Mesolimbic dopamine system

Parenting behavior is modulated by the mesolimbic dopamine (DA) 
system, which signals the positive value of offspring (Pereira and Mor
rell, 2011; Stolzenberg and Numan, 2011). Dopamine levels in the NAc 
increase during maternal interactions, and the quality of maternal care 
correlates with these elevated DA levels (Dai et al., 2022; Shnitko et al., 
2017; Hansen, Bergvall, and Nyiredi, 1993; F. A. Champagne et al., 
2004). Lesions or inactivation of the VTA or NAc, as well as injecting 
dopamine antagonists into the NAc, all significantly impaired maternal 
behavior in rodents (Numan et al., 2009; Hansen et al., 1991; Numan 
et al., 2005). Optogenetic inhibition of VTA dopamine cells at the onset 
of pup contact slows down the emergence of maternal care, suggesting 
that dopamine signals the reward value of pup interaction and reinforces 

the behavior (Xie et al., 2023).
Stress can impair the development of the mesolimbic dopamine 

system. For example, Peña et al. found that early life stress induces long- 
lasting changes in the expression of Otx2, a developmental transcription 
factor implicated in dopamine neuron development (Catherine J. Peña 
et al., 2017). Similarly, adult female offspring of low-LG rat dams show 
low expression of the LIM homeobox transcription factor 1 beta (Lmx1b) 
and brain-derived neurotrophic factor (BDNF), two essential genes for 
the development and survival of dopaminergic neurons, and corre
spondingly, the number of tyrosine hydroxylase (TH)-immunoreactive 
dopamine neurons in the VTA decreases (Catherine Jensen Peña et al., 
2014). In adult female rats reared with dams with limited bedding and 
nesting materials, the number of spontaneously active VTA DA neurons 
decreases by 75 % compared to control animals reared with dams with 
abundant resources (Rincón-Cortés and Grace, 2022). In postpartum 
female rats that experience repeated restraint stress during pregnancy, 
NAc shell cells show approximately 30 % reduction in dendritic length, 
branching, and spine density (Haim et al., 2014). Human studies also 
suggest dysregulation of the mesolimbic dopamine system under 
stress-induced disease conditions. For example, mothers with post
partum depression (PPD) show reduced brain activation in the meso
limbic system in response to infant-related cues (Moses-Kolko et al., 
2011; Post and Leuner, 2019; Duan et al., 2017). Altogether, stress can 
induce molecular, electrophysiological, and structural changes in the 
mesolimbic dopamine system, reducing dopamine release to pups, 
diminishing and rewarding the value of pups, and ultimately impairing 
parental care behaviors.

3.4. The HPA axis in stress-induced maternal behavior impairment

How does stress alter dopamine, oxytocin, and estrogen systems? The 
hypothalamic-pituitary-adrenal (HPA) axis is at the core of orchestrating 
stress responses. In detail, corticotropin-releasing hormone (CRH)- 
expressing cells in the PVH comprise the first responders of the HPA axis 
(Antoni, 1986). These cells are activated by various stressors. Upon 
activation, CRH is released into the hypophysial portal plexus at the 
median eminence, binding to receptors in the anterior pituitary and 
triggering the release of adrenocorticotropic hormone (ACTH). ACTH 
then stimulates the adrenal cortex to synthesize and secrete glucocor
ticoids, the stress hormone, including cortisol in humans and cortico
sterone (CORT) in rodents (James P. Herman et al., 2016). 
Glucocorticoids cause a wide range of bodily changes, such as increasing 
glucose levels to fuel the muscle and brain and suppressing immune 
systems (Hostinar et al., 2014; Coutinho and Chapman, 2011; Exton, 
1979; Chourpiliadis and Narothama, 2024). Glucocorticoid also pro
vides negative feedback to the PVH CRH cells to prevent over-activation 
of the HPA axis (J. P. Herman et al., 2012).

In the context of parental behavior, adequate caregiving is essential 
for the normal development of HPA axis. Parents act as social buffers to 
shield their offspring from stressors, keeping HPA activity low during 
early development (Wiedenmayer et al., 2003; Coe et al., 1982; Stanton 
and Levine, 1985; Shionoya et al., 2007). When the shield fails due to 
either inadequate care or excessive stress, the HPA axis in the pups be
comes hyper-active, reflected by 3–4 folds increase in basal plasma 
CORT and ACTH levels and exaggerated and prolonged CORT and ACTH 
responses to subsequent stressors (Avishai-Eliner et al., 2001; Gilles 
et al., 1996; Suchecki et al., 2008). At the PVH, glucocorticoid receptor 
expression drastically decreases, indicating reduced negative feedback 
(Avishai-Eliner et al., 2001; Gilles et al., 1996; Suchecki et al., 2008). 
PVH CRH levels reportedly decrease in some studies but increase in 
others, likely depending on the type and duration of the stress (Plotsky 
et al., 2005; Owens and Nemeroff, 1991; Darlene D Francis and Meaney, 
1999; Swanson and Simmons, 1989). These changes persist in adulthood 
and thus permanently alter the stress responses. Consistent with animal 
studies, children who experience early life adversity, such as poverty 
and poor parental care, show increased basal cortisol levels and 
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heightened emotional reactivity (Mehta et al., 2009; Tottenham et al., 
2010; Holochwost et al., 2020).

The long-lasting change in the basal CORT level could contribute to 
the altered function of the dopamine, oxytocin, and estrogen systems. In 
support, dopamine neurons express abundant glucocorticoid receptors 
(Härfstrand et al., 1986). Chronic CORT administration in drinking 
water in adolescent male mice decreases excitability and excitatory 
synaptic transmission onto VTA dopamine neurons (Peng et al., 2021). 
CORT treatment also decreases dopamine release in the dorsal striatum 
in females and impairs the function of dopamine transporter in male 
mice (Holloway et al., 2023). Behaviorally, the CORT-treated animals 
show higher anxiety and reduced reward-seeking behaviors (Peng et al., 
2021). In addition to CORT, CRH can also reduce VTA dopamine release 
and motivation to work for food rewards (Wanat et al., 2013). Thus, a 
basal elevation of stress hormones due to early-life stress or stress during 
pregnancy and lactation likely dampens the dopamine system function, 
reducing parental motivation and the rewarding value of pups.

Elevated glucocorticoids can disrupt the estrogen system by inter
fering with the hypothalamic-pituitary-gonadal (HPG) axis, which reg
ulates estrogen secretion (Breen and Karsch, 2006). In the HPG axis, 
gonadotropin-releasing hormone (GnRH) from the hypothalamus in
duces the release of luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH), which then control the release of estrogen (Albert and 
Newhouse, 2019). Glucocorticoid receptors are abundantly expressed in 
hypothalamic areas critical for GnRH neuron regulation (Dufourny and 
Skinner, 2002; Takumi et al., 2012). Early studies showed that cortisol 
can inhibit hypothalamic GnRH release. For example, in gonadecto
mized rhesus monkeys and pigs, chronic glucocorticoid administration 
suppressed LH and FSH secretion without affecting pituitary respon
siveness to GnRH (Breen and Mellon, 2014; Dubey and Plant, 1985; 
Estienne et al., 1991). In sheep, high cortisol levels suppress estradiol 
levels and prevent the LH surge during the follicular phase (Macfarlane 
et al., 2000). Similarly, chronic exposure to stress also impairs estrous 
cyclicity and reduces GnRH-induced LH synthesis and secretion in 
diestrus female mice (Breen et al., 2012). In adult male rats, chronic 
treatment with CORT significantly reduces serum LH levels and de
creases hypothalamic GnRH mRNA expression by 35–40 % compared to 
vehicle-treated animals (Gore et al., 2006). Furthermore, glucocorticoid 
receptors can displace Esr1 and its co-activator from their DNA binding 
sites to suppress Esr1-medicated transcription activation (Karmakar 
et al., 2013). Thus, chronic elevation of CORT could counter-act the 
effect of estrogen on activating the parental circuits.

The relationship between HPA axis activation and oxytocin system is 
not straightforward. Some studies support the suppressive role of glu
cocorticoids on oxytocin. Specifically, glucocorticoid was found to 
reduce OXT release by inhibiting glutamatergic inputs while enhancing 
GABAergic inputs to OXT cells (Di et al., 2005; 2003). Dexamethasone, a 
potent glucocorticoid, has been indicated to reduce the synthesis of OXT 
mRNA in the PVH and SON in rats (Ruginsk et al., 2009). However, 
several human studies found CORT level is positively correlated with 
oxytocin (Tops et al., 2007, 2007a; Taylor et al., 2006; Li et al., 2019). 
Additionally, adrenalectomized animals show decreased OXTR binding, 
while corticosterone implants increase OXTR binding in the hippo
campus, suggesting that glucocorticoid promotes OXTR expression 
(Liberzon and Young, 1997; Liberzon et al., 1994).Overall, whether HPA 
axis activation is responsible for stress-induced oxytocin system defi
ciency that leads to impaired parental behaviors remains to be investi
gated in future studies.

Lastly, HPA axis overactivation could also directly impair parental 
behaviors (Fig. 2). Newborn pups themselves could be a source of 
stressors. For instance, aversive or distress-related calls from pups 
induce place aversion (Lecca et al., 2023), and female mice will actively 
press a lever to turn off pup USV calls (Schiavo et al., 2020). In humans, 
infant crying can activate the HPA axis, increasing cortisol levels and 
heart rate (Swain, Kim, and Ho, 2011; Alison S. Fleming et al., 2002; 
Giardino et al., 2008). As parental behaviors are often prompted by 

stress signals from infants, e.g., cries (Bornstein et al., 2017), parenting 
behaviors, in many cases, could be considered a stress-coping process. In 
rats that experienced chronic stress, such as repeated cold exposure, the 
animals become more passive in dealing with stressors, reflected in their 
decreased burying behavior and increased immobility in the shock 
probe test and their increased latency to feed in a novelty suppressed 
feeding test (M. K. Roth et al., 2012). Thus, stressed parents may become 
less responsive to pup stress signals and show reduced active stress 
coping behaviors, i.e., parental care. Consistent with this hypothesis, in 
rodents, anxious lactating females display reduced licking and grooming 
of pups (Mir et al., 2022; Perani and Slattery, 2014).

Thus, chronic stress, especially during critical developmental pe
riods, can cause long-lasting dysregulation of the HPA axis. On the one 
hand, the heightened stress hormone may negatively affect multiple 
neurochemical systems that support maternal behaviors. On the other 
hand, an over-activated HPA axis may compromise active maternal 
behaviors in response to pup stress signals.

4Concluding remarks

It is important to note that while we review these systems separately, 
they are heavily interconnected. For instance, the OXTR gene contains 
estrogen response elements, enabling the Esr1 signaling to modulate 
OXTR expression (Young et al., 1998; 1997; Rozen et al., 1995). Thus, a 
decrease in Esr1 expression in the MPOA will not only reduce the effect 
of estrogen on MPOA properties but also reduce the cell sensitivity to 
oxytocin (de Kloet et al., 2008). VTA dopamine neurons express both 
Esr1 and OXTR, and hence stress-induced decrease in Esr1 and OXTR 
will also change estrogen and oxytocin modulation in dopamine cells, 
causing reduced dopamine responses to pups in mothers (Peris et al., 
2017; Vandegrift et al., 2020). Lastly, oxytocin has been shown to sup
press HPA responses to stressors (Pati et al., 2020; Takahashi, 2021). 
Interestingly, baby cries can induce oxytocin release in new mothers, 
which may help dampen the stress response induced by the cry normally 
(Bornstein et al., 2017; Valtcheva et al., 2023). A deficit in the oxytocin 
system may worsen the HPA activation to pup-related stress signals.

Overall, estrogen, dopamine, oxytocin, and HPA axis function in 
concert to support the emergence and expression of parental behaviors. 
While sex hormones prepare the maternal circuit to engage, oxytocin 
boosts maternal performance, whereas dopamine reinforces the behav
iors by signaling the positive valence of pup interaction. CRH neurons, 
on the other hand, are being kept in check in both mothers and pups 
under normal conditions. Stress, either occurring in early life or during 
pregnancy and lactation, can sensitize HPA responses and reduce the 
efficacy of estrogen, dopamine, and oxytocin systems by influencing 
both receptor expression and neurochemical release. These changes 
could lead to decreased maternal circuit responses to pups and exag
gerated HPA activation in response to pup stress cues, collectively 
causing poor parental behaviors (Fig. 2). It is worth noting that although 
not discussed here, other modulatory systems, e.g., prolactin, can also 
influence parental behaviors (Stagkourakis et al., 2020) and be affected 
by stress. Lastly, recent studies have started to reveal a separate circuit 
mediating negative pup-directed behaviors, specifically infanticide, 
which antagonizes the maternal circuit (Tsuneoka et al., 2015; Mei et al., 
2023). Stress may also compromise parental behaviors by enhancing the 
responses of infanticidal circuits, a possibility that remains to be 
investigated in future studies.

Competing interests statement

The authors declare no competing interest.

CRediT authorship contribution statement

Yifan Wang: Investigation, Writing – original draft, Writing – review 
& editing. Dayu Lin: Conceptualization, Funding acquisition, 

Y. Wang and D. Lin                                                                                                                                                                                                                            Neuroscience Research 216 (2025) 104866 

6 



Investigation, Supervision, Writing – review & editing.

Acknowledgements

This research was supported by NIH grants R01MH124927, 
R01MH101377, U19NS107616, and R01HD116127 (D.L.).

References

Abramova, Olga, Ushakova, Valeria, Zorkina, Yana, Zubkov, Eugene, 
Storozheva, Zinaida, Morozova, Anna, Chekhonin, Vladimir, 2021. The Behavior and 
postnatal development in infant and juvenile rats after ultrasound-induced chronic 
prenatal stress. Front. Physiol. 12 (April), 659366. https://doi.org/10.3389/ 
fphys.2021.659366.

Afonso, Veronica M., King, Samantha J., Novakov, Marko, Burton, Christie L., 
Fleming, Alison S., 2011. Accumbal dopamine function in postpartum rats that were 
raised without their mothers. Horm. Behav. 60 (5), 632–643. https://doi.org/ 
10.1016/j.yhbeh.2011.08.016.

Ahern, Todd H., Hammock, Elizabeth A.D., Young, Larry J., 2011. Parental division of 
labor, coordination, and the effects of family structure on parenting in monogamous 
prairie voles (Microtus ochrogaster). Dev. Psychobiol. 53 (2), 118–131. https://doi. 
org/10.1002/dev.20498.

Albert, Kimberly M., Newhouse, Paul A., 2019. Estrogen, Stress, and depression: 
cognitive and biological interactions. Annu. Rev. Clin. Psychol. 15 (May), 399–423. 
https://doi.org/10.1146/annurev-clinpsy-050718-095557.

Ammari, Rachida, Monaca, Francesco, Cao, Mingran, Nassar, Estelle, Wai, Patty, Del 
Grosso, Nicholas A., Lee, Matthew, Borak, Neven, Schneider-Luftman, Deborah, 
Kohl, Johannes, 2023. Hormone-mediated neural remodeling orchestrates parenting 
onset during pregnancy. Science 382 (6666), 76–81. https://doi.org/10.1126/ 
science.adi0576.

Antoni, Ferenc A., 1986. Hypothalamic control of adrenocorticotropin secretion: 
advances since the discovery of 41-residue corticotropin-releasing factor. Endocr. 
Rev. 7 (4), 351–378. https://doi.org/10.1210/edrv-7-4-351.

Arling, G.L., Harlow, H.F., 1967. Effects of social deprivation on maternal behavior of 
rhesus monkeys. J. Comp. Physiol. Psychol. 64 (3), 371–377. https://doi.org/ 
10.1037/h0025221.

Avishai-Eliner, S., Gilles, E.E., Eghbal-Ahmadi, M., Bar-El, Y., Baram, T.Z., 2001. Altered 
regulation of gene and protein expression of hypothalamic-pituitary-adrenal axis 
components in an immature rat model of chronic stress. J. Neuroendocrinol. 13 (9), 
799–807. https://doi.org/10.1046/j.1365-2826.2001.00698.x.

Baker, Stephanie, Chebli, Mark, Rees, Stephanie, LeMarec, Nathalie, Godbout, Roger, 
Bielajew, Catherine, 2008. Effects of gestational stress: 1. evaluation of maternal and 
juvenile offspring behavior. Brain Res. 1213 (June), 98–110. https://doi.org/ 
10.1016/j.brainres.2008.03.035.

Baram, Tallie Z., Davis, Elysia P., Obenaus, Andre, Sandman, Curt A., Small, Steven L., 
Solodkin, Ana, Stern, Hal, 2012. Fragmentation and unpredictability of early-life 
experience in mental disorders. Am. J. Psychiatry 169 (9), 907–915. https://doi.org/ 
10.1176/appi.ajp.2012.11091347.

Bentefour, Yassine, Bakker, Julie, 2024. Stress during pubertal development affects 
female sociosexual behavior in mice. Nat. Commun. 15 (1), 3610. https://doi.org/ 
10.1038/s41467-024-47300-w.

Blaze, Jennifer, Asok, Arun, Roth, Tania L., 2015. Long-term effects of early-life 
caregiving experiences on brain-derived neurotrophic factor histone acetylation in 
the adult rat mPFC. Stress 18 (6), 607–615. https://doi.org/10.3109/ 
10253890.2015.1071790.

Bock, Joerg, Wainstock, Tamar, Braun, Katharina, Segal, Menahem, 2015. Stress in 
utero: prenatal programming of brain plasticity and cognition. Biol. Psychiatry 78 
(5), 315–326. https://doi.org/10.1016/j.biopsych.2015.02.036.

Bornstein, Marc H., Putnick, Diane L., Rigo, Paola, Esposito, Gianluca, Swain, James E., 
Suwalsky, Joan T.D., Su, Xueyun, et al., 2017. Neurobiology of culturally common 
maternal responses to infant cry. Proc. Natl. Acad. Sci. 114 (45), E9465–E9473. 
https://doi.org/10.1073/pnas.1712022114.

Bosch, Oliver J., Müsch, Werner, Bredewold, Remco, Slattery, David A., Neumann, Inga 
D., 2007. Prenatal stress increases hpa axis activity and impairs maternal care in 
lactating female offspring: implications for postpartum mood disorder. 
Psychoneuroendocrinology 32 (3), 267–278. https://doi.org/10.1016/j. 
psyneuen.2006.12.012.

Breen, Kellie M., Karsch, Fred J., 2006. New insights regarding glucocorticoids, stress 
and gonadotropin suppression. Front. Neuroendocrinol. 27 (2), 233–245. https:// 
doi.org/10.1016/j.yfrne.2006.03.335.

Breen, Kellie M., Mellon, Pamela L., 2014. Influence of stress-induced intermediates on 
gonadotropin gene expression in gonadotrope cells. Mol. Cell. Endocrinol. 385 (0), 
71–77. https://doi.org/10.1016/j.mce.2013.08.014.

Breen, Kellie M., Thackray, Varykina G., Hsu, Tracy, Mak-McCully, Rachel A., 
Coss, Djurdjica, Mellon, Pamela L., 2012. Stress levels of glucocorticoids inhibit LHβ- 
subunit gene expression in gonadotrope cells. Mol. Endocrinol. 26 (10), 1716–1731. 
https://doi.org/10.1210/me.2011-1327.

Bridges, R.S., 1984. A quantitative analysis of the roles of dosage, sequence, and duration 
of estradiol and progesterone exposure in the regulation of maternal behavior in the 
rat. Endocrinology 114 (3), 930–940. https://doi.org/10.1210/endo-114-3-930.
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