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Neural plasticity supporting parental behaviors L
Patrick T. O’'Neill' and Dayu Lin"*°

Becoming a parent involves extraordinary changes that allow
caregivers to attend to and nurture infants. Neural circuits
must adapt to the demands of caregiving to orchestrate
various complex nurturing behaviors. These changes occur
between two opposing circuits: a circuit primed for the
expression of parenting to execute caregiving, and a circuit
that suppresses this behavioral expression when the timing is
not appropriate. In this review, we provide an overview of the
neural circuits supporting the positive and negative control of
parental behaviors and discuss mechanisms by which these
opposing circuits are altered to facilitate the onset of parental
care.
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Parenting encompasses a suite behaviors that ensure
offspring survival and well-being, and is observed
throughout the animal kingdom [1]. Rodents, particu-
larly rats and mice, are widely used to study parenting
due to their robust parental care and neural circuit
access. Parental animals display a variety of non-pup-
directed behaviors, like nest-building and maternal
aggression, and pup-directed behaviors to provide
nutrition, safety, and warmth. Among pup-directed be-
haviors, pup retrieval is extensively used as a metric for
parental responsiveness. When isolated from the nest,
pups emit ultrasonic vocalizations that trigger parental
animals to approach [2]. Adults then sniff the pup to
sample chemosensory cues, and pick up the pup and
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carry it to the nest. Pup retrieval is typically followed by
repetitive pup grooming, nest building, and nursing (in
mothers) or crouching over pups [3]. While female ro-
dents typically provide the majority of parental care,
both males and females possess the circuitry to exhibit
parenting [4].

The expression of parental behaviors depends on sex
and experience. Mothers are highly parental, while
nulliparous females range from infanticidal, avoidant of
pups, or spontaneously maternal [5], depending on the
species and strain. Nulliparous male rats and mice are
non-parental or infanticidal [6]. Mating is capable of
inducing parental behaviors. Females are primed by
surges of hormones during pregnancy to robustly care for
pups [7]. Male mice switch from infanticidal to pup
caring behaviors several weeks after mating — a timeline
that coincides with the birth of their pups [6]. Rodents
can also show parental behaviors without mating; sem-
inal work by Jay Rosenblatt illustrated that repeatedly
exposing virgin rats to pups, a process termed pup
sensitization, elicits parenting [8]. This sensitization
process is additionally regulated by development; young
rats acquire parental behaviors more readily than adults
[9]. Additionally, nulliparous female mice can display
maternal behaviors spontaneously, and co-housing with a
dam and her litter can accelerate the onset of maternal
care [10]. These findings highlight diverse plasticity
mechanisms — hormonal and experiential — that
initiate parenting.

Several reviews have outlined the core neural circuits
regulating parental behaviors, [1,4,11—13]. Given the
various triggers that can initiate parenting, it is impor-
tant to understand the components of the circuit un-
dergoing plasticity. Various circuit nodes can instruct a
parental state transition, while others integrate physio-
logical or environmental signals to modify the likelihood
of parental onset. We propose that two interacting cir-
cuits regulate parenting: one promotes its expression
and another suppresses it (Figure 1). The behavior-
promoting circuit drives the expression of specific
parenting behaviors, such as pup retrieval, pup groom-
ing, and nursing. The behavior-suppressing circuit
blocks the activation of the behavior-promoting circuit,
and in many cases, drives hostile behaviors towards the
pups. We discuss the primary functions of these
opposing circuits and highlight plasticity mechanisms
that promote parental onset.
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Neural circuitry underlying the promotion and suppression of parenting.

Parental behavior promoting circuit

At the center of the parental behavior-promoting circuit
is the medial preoptic area (MPOA) (Figure 1a). At the
output level, it projects to the ventral tegmental area
(VTA) and periaqueductal gray (PAG) to promote
various aspects of parental behaviors. At the input level,
the paraventricular nucleus of the hypothalamus (PVN)
and prefrontal cortex (PFC) project to the MPOA and
modulate parental behaviors, although they are not the
typical “sensory” regions that relay pup cues to
the MPOA.

Medial preoptic area

The MPOA is a central node in the parental behavior
circuit [14]. Lesioning the MPOA virtually abolished
parental behaviors across species [14—16]. Over the last
decade, substantial progress has been made to uncover
genetically defined cell types within the MPOA
governing parenting. Galanin (Gal)-, estrogen receptor
alpha (Esrl)-, prolactin receptor (Prlr)-, calcitonin re-
ceptor (CalcR)-, and bombesin receptor (Brs3)-expres-
sion cells in the MPOA have all been found to be critical
for parenting [12,17—21]. A snRNAseq and multiplexed
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error-robust  fluorescence in  situ  hybridization
(MERFISH) study identified six MPOA subpopulations
relevant for parenting, and two were recently investi-
gated — one featuring CalcR and another featuring Brs3
[22]. Yoshihara et al. found that silencing MPOACYIR
cells or knocking down CalcR expression in the MPOA
disrupts maternal behaviors [23]. A recent study found
that MPOAP™® neurons also play a role in maternal be-
haviors [20]. The cells are inhibited by hunger-signaling
cells in the arcuate nucleus, allowing females to switch
between food seeking and parental care according to
energy demands [20]. MPOA®R and MPOAP™? cells
are enriched in Esrl and Prlr, which themselves may
control distinct aspects of parenting; MPOA Esrl
knockdown reduces pup retrieval [24], while Prlr dele-
tion impairs nursing but not retrieval [21]. With the
refinement of molecularly-identified cell types, future
work should explore the heterogeneity and signaling
mechanisms within these cells to understand their
recruitment during the transition to parenting.

Mesolimbic dopamine system

The VTA sits downstream of the MPOA and plays a key
role in parental behaviors [25]. Activating VTA-
projecting MPOA® neurons increases a general moti-
vation to interact with pups [12], while VTA-projecting
MPOAP™ neurons induce pup retrieval by targeting
non-dopaminergic cells, which are mainly GABAergic
and likely disinhibit dopaminergic (VTAPY) neurons
[18]. VTAP? neurons show phasic bursts of activity
during pup retrieval [18,26], leading to dopamine
release in the nucleus accumbens (NAc) [27]. VIA
appears to be a gate for expressing pup retrieval; acti-
vating MPOA™™ neurons while blocking VTA activity
nearly abolishes pup retrieval [18]. Beyond generating
acute parental actions, Xie et al. found that VTAPA ac-
tivity acts as a reinforcement signal to improve pup
retrieval over time [26].

Early studies suggested that NAc, a major downstream
target of VTAPA neurons, could interface with motor
control systems that permit parenting. However, the
exact function of NAc remains poorly understood.
Blocking dopamine signaling in the NAc disrupts
maternal behavior [28], but lesioning the NAc did not
impair maternal behaviors [29,30]. Interestingly,
lesioning one side of the ventral pallidum (VP), a major
downstream target of the NAc, and MPOA on the
contralateral side impaired maternal behaviors, leading
to the hypothesis that MPOA inhibits NAc, which then
disinhibits VP to drive parenting [29]. However, if this
model is correct, lesioning NAc should tonically disin-
hibit VP, causing improperly expressed parental behav-
iors. This prediction is inconsistent with the normal
parental behaviors after NAc lesion [29,30]. The exact
function of NAc and other brain regions downstream of
VTAPA remains unclear.

Neural plasticity for parental behaviors O’Neill and Lin 3

The lateral habenula (LHD) is a major upstream input to
the VTA. It sends dense glutamatergic projections to
GABAergic cells in the rostromedial tegmental nucleus
(RMTyg), which in turn inhibit VTA DA cells [31].
Given that the MPOA-VTA projection, which activates
VTAPA cells, promotes parental behaviors, LHb activa-
tion, which inhibits VTAPA cells, is expected to suppress
parental behaviors. However, Lecca et al. reported that
pup distress calls activate LLHb neurons, triggering a
negative affective state in virgin female mice but are
functionally crucial for pup retrieval [32]. When LHb
cells were inhibited, pup retrieval was impaired in
parental virgin females [32].

How could we reconcile these seemingly contradictory
results? The first step of parental behavior is to gain
access to the pup. This step typically involves
approaching a pup at a distance. While approaching is
often considered an appetitive behavior, reflecting the
positive valence of the target, this is not always the case.
Animals can also approach a stimulus that is annoying
and negative, with the hope of terminating it. As an
analogy, if your neighbor plays loud music at night, you
may go and talk to your neighbor to try to stop the music.
For mice, there are two ways to terminate pup distress
calls: retrieving the pups or Kkilling them. The LLHb
likely does not determine which strategy will be
implemented; instead, it is likely determined by the
animal’s parental state. In a highly parental animal, pup
retrieval is likely to be implemented, as in Lecca’s study
[32]. In a low parental state animal, e.g., virgin males,
infanticide is expected to occur. The LHb may merely
signal the aversive nature of the pup calls. When LHb is
inhibited, the animals are less motivated to stop the pup
calls, hence reducing retrieval in parental virgin females.
One prediction based on this hypothesis, and remains to
be tested, is that LHb inhibition will also reduce pup
attack in naturally infanticidal animals.

Periaqueductal gray

The PAG, another MPOA target, also regulates motor
components of parenting. Lesioning the lateral and
ventrolateral caudal PAG reduced the kyphotic nursing
posture by 85 %, significantly reducing pup weight
gain [33]. More recently, it was found that MPOASY
projections to the PAG bidirectionally regulate pup
grooming [12], similar to the effects of whole
MPOA% manipulations [17]. The PAG’s innervation
of the jaw muscles [34] could explain its effect on
active pup-directed behaviors, like pup grooming, but
future studies are needed to establish
this relationship.

Paraventricular nucleus of the hypothalamus

The PVN contains neuropeptidergic cells that can
modulate the parental expression circuit. The PVN is
bidirectionally connected with the MPOA [12] and
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contains oxytocin- and vasopressin-expressing neurons,
which have extensive roles in parenting [35,36]. In fe-
males, tyrosine hydroxylase (TH)-expressing neurons in
the anteroventral periventricular nucleus (AVPV) con-
trol PVN oxytocin release to promote maternal behavior
[37]. PVN oxytocin neurons also project widely
throughout the brain, and their connections to the
MPOA, VTA, and auditory cortex enhance animals’
readiness to exhibit parenting [38—41].

Prefrontal cortex

The prefrontal cortex (PFC) has been implicated in
parental behaviors for decades. However, its exact
function remains elusive and appears subregion-
specific. Lesioning medial PFC (mPFC) slowed down
pup retrieval, although females eventually retrieved
most pups within the 10-min testing period [42].
Conversely, acute pharmacological inactivation of
mPFC, including both prelimbic cortex (PL) and
infralimbic cortex (IL), virtually abolished pup retrieval
in female rats [43]. Pereira and Morell inactivated PL
and IL separately and observed opposite behavioral
changes: while PL inactivation increased the prefer-
ence for a pup-associated environment, 1L inactivation
increased the preference for a cocaine-associated
environment, suggesting that PL. suppresses, whereas
IL enhances maternal motivation [44]. More recently,
Corona et al. showed increased neural activity during
pup retrieval in the female anterior cingulate cortex
(ACC), another subregion of the PFC [45]. Chemo-
genetic inhibition of ACC excitatory neurons decreased
pup interaction time by approximately 25 % [45]. Cells
in the orbitofrontal cortex (OFC) are also activated
during pup interaction and retrieval [46]. Ablating OFC
cells delayed the emergence of pup retrieval behavior
in virgin females over days. These results collectively
suggest that multiple PFC subregions could influence
parental behaviors. With the exception of PL, PFC
regions promote parental motivation and behavioral
expression. However, unlike MPOA, the role of PFC
appears to be compensable, especially when the lesion
is permanent. PFC cells activated during pup retrieval
overlap with cells activated during sucrose reward [46],
suggesting that PFC’s role in maternal behavior likely
reflects its general role in facilitating rewarding goal-
directed behaviors.

PFC potentially influences parenting through its pro-
jection to the MPOA [47]. IL projects to MPOA more
densely than PL, consistent with the positive role of IL,
but not PL, in promoting maternal motivation [47]. PFC
may also influence parental behavior through its bidi-
rectional connection with VTAPA neurons [48]. Inacti-
vating OFC reduces vTAPA activity and dopamine
release in the NAc during pup retrieval in parental virgin
females, suggesting a modulatory role in enhancing the
pup’s reward value [46].

Parental behavior suppressing circuit
Recent studies revealed that three regions — the bed
nucleus of stria terminalis (BNST), medial amygdala
(MeA), and posterior amygdala (PA) — can drive nega-
tive pup-directed behaviors, i.e., infanticide (Figure 1b).
These regions all project densely to the MPOA,
enabling strong influence over the parenting circuit.

Bed nucleus of stria terminalis

The BNST, a region bidirectionally connected with
MeA and MPOA, contains several subregions. While
ventral BNST (vVBNST) has been suggested to play a
similar role as MPOA in promoting parenting [5,49], the
rhomboid nucleus (BNSTrh) and principal nucleus
(BNSTpr) both direct infanticide [50,51].

Our recent study discovered that BNSTpr Esrl cells
(BNSTpr™™) are necessary and sufficient for infanti-
cide in female mice [51]. Optogenetically activating
BNSTprEsrl inputs to MPOA suppresses maternal
behavior and induces infanticide. These cells mutually
inhibit MPOA®™  cells. During  motherhood,
BNSTpr™™ cell excitability decreases while MPOA™™
cell excitability increases, shifting the circuit and
behavior toward maternal care.

BNS'Trh is also linked to infanticide. BNSTrh neurons
show elevated c-Fos following infanticide, and BNSTrh
lesions suppress infanticide [50]. BNSTrh cells receive
inhibitory inputs from the MPOA, but unlike BNSTpr
cells, do not project back to MPOA [50]. Inhibitory
inputs to BNSTrh, putatively from MPOA, are poten-
tiated following paternal experience in mice [52], of-
fering another pathway by which MPOA can suppress
infanticidal drive.

Medial amygdala

The MeA receives olfactory information directly from
the accessory olfactory bulb and indirectly from the
main olfactory system [53], and projects densely to the
MPOA. Thus, MeA is well-positioned to facilitate
parental behaviors by transmitting pup olfactory cues to
the MPOA. However, early lesion studies found that
damaging MeA promotes parental behaviors [54],
suggesting an inhibitory role of MeA in parenting.
Concordantly, Chen et al. found that high-intensity
optogenetic stimulation of MeA GABAergic cells
(MeAY#Y) elicits infanticide in males [55]. Our study
further showed that activating MeA to MPOA projecting
cells induces infanticide in virgin female mice [51].
These results suggest that MeA sends GABAergic
inputs to the MPOA to suppress parenting.

The MeA under%oes retuning as parental behaviors
emerge. Bulk Ca’" recording revealed that MeAY&"
neurons are more active during infanticide in virgin
males than during pup grooming in parental males and
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females [55], and sexual experience allows MeA neurons
to better discriminate pups from other conspecifics
[56]. MeA may reduce the response towards pups in
parents, which may decrease its suppression of
the MPOA.

Importantly, weak activation of GABAergic MecA neu-
rons promotes pup grooming in males and females [55].
When MeA-MPOA cells were chemogenetically acti-
vated, pup attack and grooming were simultancously
enhanced [51]. Thus, MeA may also contain a set of
cells that promote aspects of parental behaviors. How
parenting-promoting and suppressing cells are organized
in the MeA remains an open question.

Posterior amygdala

The PA is enriched with Esrl. PA®™™ neurons send
direct excitatory inputs to MPOA®™ cells, making it
well-positioned to facilitate parental behaviors [57].
Surprisingly, two studies reported that activation of PA
cells instead elicits infanticide [58,59]. However, we
found that MPOA-projecting PA cells show higher c-Fos
expression after parental behaviors than infanticide
[51]. A recent study revealed that PA neurons projecting
to the MPOA contain two distinct cell populations —
one relevant for infanticide and one for parenting [60].
Serotonin receptor 7 is highly enriched in the parenting-
activated cells, and activating these cells suppresses
infanticide in virgin females [60]. The PA also contains
oxytocin receptor-expressing interneurons [58], which
may interface between infanticide- and parental
behavior-related populations and bias the behavioral
drive based on oxytocin level. Thus, both MeA and PA
can suppress parental behavior-promoting circuit,
although these regions also contain a subset of cells that
may facilitate pup caring.

Plasticity of the parental circuits

The parental behavior-promoting and suppressing cir-
cuits push and pull throughout the lifespan. Recent
studies have described various mechanisms that enable
the parental behavior-promoting circuit to prevail in this
tug-of-war during parenthood, including facilitating the
recognition of pup cues, hormonal and peptidergic
modulation as a function of reproductive state, circuit
remodeling during development, and neuromodulatory
state transitions.

Changes in responses to pup cues during
parenthood

Parental care relies on a combination of sensory inputs
[61], and sensory systems adapt during the transition to
parenting. In particular, primary olfactory, auditory, and
somatosensory regions are extensively modified by
parental experience. In mice, pregnancy stimulates
neural stem cells to produce transient olfactory bulb
interneurons, which allow mothers to recognize their
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pups following parturition [62]. Additionally, responses
to natural odors strengthen in the main olfactory bulb of
mothers [63], and pup odors modulate auditory re-
sponses, sharpening auditory cortical tuning to pup vo-
calizations [64]. Compared to non-parental females,
neurons in the auditory cortex of maternal mice respond
more reliably to pup vocalizations [40] and generalize
across a range of pup vocalizations to initiate pup
retrieval [65]. Mothers also receive somatosensory input
from pups to facilitate milk letdown [66]. In nursing
mothers, the representation of nipple-bearing skin is
about twofold larger than in nonlactating females [67].
"To what extent these changes in sensory coding occur in
fathers remains largely unknown.

Role of sex hormones and neuropeptides in parental
circuit plasticity

Parenting behavior is highly sensitive to hormonal
regulation. Estrogen, progesterone, prolactin, and
oxytocin, play crucial roles in the induction of maternal
behavior [7] and have largely conserved roles in males
and females in the absence of pregnancy [13]. These
hormones act directly on the parental circuit, and their
receptor expression in the brain is dynamically modu-
lated by reproductive state [68]. Moreover, these hor-
mones trigger a cascade of changes within the circuit,
regulating transcription, synaptic transmission, bio-
physical properties, and morphology of the cells [7].
The MPOA is enriched in hormone receptors [22],
making it a popular site for exploring the neuroendo-
crine regulation of parenting.

In lactating females, the basal firing of MPOAP™ and
MPOA% neurons decreases, but responses elicited by
pup interactions increase, effectively enhancing the
signal-to-noise ratio and heightening selectivity for pups
[18,69]. During pregnancy, estrogen increases cell
excitability and progesterone facilitates excitatory
inputs to MPOA cells [69]. The elevated excitability of
MPOA cells can inhibit infanticide-driving cells in the
BNSTpr, thereby suppressing infanticidal motivation in
favor of maternal care [51]. These hormones also in-
fluence pup non-directed behaviors that prepare the
animal for motherhood; progesterone modulates the
neural activity of the Edinger—Westphal nucleus, a
midbrain structure important for preparatory nesting
before sleep, to promote nest building during pregnancy
[70]. These physiological changes are accompanied by
morphological plasticity. Rat MPOA cell bodies increase
by nearly 50 % as a result of pregnancy [71], and den-
dritic spine density increases in pregnant mice and rats
[69,71]. These changes offer mechanistic insight into
the well-described phenomenon that estrogen and
progesterone facilitate maternal behaviors [72,73].

Prolactin administration in the MPOA stimulates
maternal behavior, and MPOA Prlr antagonism delays
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the onset of maternal behavior in hormone-primed rats
[7,74]. Interestingly, deletion of Prlr from MPOA neu-
rons indiscriminately, but not from GABAergic or
glutamatergic MPOA neurons, significantly impairs
nursing [21]. This suggests that even a small amount of
prolactin signaling is sufficient to sustain maternal
behavior, and prolactin likely operates through a
distributed circuit. In particular, prolactin has been
linked to maternal motivation; systemic antagonism of
Prlr impairs pup retrieval and nursing in rats introduced
to a novel cage [75], and congenital knockout of Prlr in
all GABAergic neurons impairs females’ ability to
retrieve pups in a T-maze [76]. Thus, while Prir MPOA
neurons influence nursing, the distributed action of
prolactin in parental circuits may orchestrate other
components of maternal behaviors.

Systemic injections of oxytocin facilitate maternal
behavior in nulliparous female rodents [40], and
oxytocin action in the MPOA and VTA promotes the
onset of maternal care [41]. Several recent studies have
detailed the mechanisms by which oxytocin can act on
the parental circuit. Valtcheva et al. identified that the
posterior intralaminar thalamus relays pup call infor-
mation to PVN oxytocin neurons to promote pup
retrieval [77]. This is accomplished through the long-
term depression of inhibition on oxytocin neurons via
internalization of postsynaptic GABA receptors, which
allows for delayed, persistent firing of these cells and
oxytocin release [77]. Oxytocin release can stimulate
plasticity in the auditory cortex; when paired with pup
vocalizations, oxytocin transiently decreases inhibitory
transmission and facilitates excitatory long-term
potentiation to enhance coding of pup cues and accel-
erate maternal behavior onset [40]. In a similar vein,
oxytocin can work with serotonin in the NAc to induce
long-term depression on medium spiny neurons and
promote social reward [78]. Thus, oxytocin is capable of
modifying multiple components of the parental circuit,
both enhancing the salience of pup sensory cues and
modifying social reward.

Hormonal actions in male parental behaviors

Although males do not receive the same pregnancy-
related hormonal cues as females, many of these same
hormones serve important functions in paternal
behavior. Esrl represents a common cell type for
parenting in males [19], and stimulation of MPOA!
cells promotes paternal behaviors [19]. Likewise, pro-
lactin is correlated with paternal behavior. Deleting the
prolactin receptor from CamKIla-expressing cells dis-
rupts pup retrieval in sires [79]. Using MPOA% neu-
rons as an entry point, Stagkourakis et al. showed that
prolactin directly depolarizes the cell membrane, facil-
itates spontaneous excitatory currents, and increases
neuronal firing rate by closing calcium-dependent small
conductance potassium channels [80]. Interestingly,

male rats have lower circulating levels of prolactin than
mice and do not show paternal behavior. Tuning the
oscillatory frequency of mouse tuberoinfundibular
dopamine cells, a key population that tonically sup-
presses lactotroph cells to decrease prolactin secretion,
to a rat-like frequency can lower prolactin levels and
suppress paternal behaviors in mouse sires [80]. A
recent study found that oxytocin plays a critical role in
the induction of parenting in male mice; deleting
oxytocin from the PVN impairs paternal behaviors [38].
However, it remains unclear if these hormonal signals
produce the same physiological changes in males as in
females, such as increased signal-to-noise ratio mediated
by estrogen in the MPOA [18,69] and oxytocin in the
auditory cortex [40]. Moreover, the hormonal changes
from insemination to fatherhood and their effects on
parental circuits are poorly understood. For example,
circulating prolactin levels do not differ between non-
parental virgins and sires [79,80]. Prolactin surges
transiently during mating, but blocking this surge does
not affect the subsequent transition to paternal care
[79]. Investigating the action of these hormones on
neural circuit function in males would inform us to what
degree parental onset differs between the sexes.

Change in parental behaviors during development
Parental behaviors also change over development. Juve-
nile rats are more readily parentally responsive than
adults [9], and juvenile male mice do not attack pups, but
become infanticidal in adulthood [81]. Sex hormones
appear to be responsible for the behavioral switch during
development. Estrogen supplementation during puberty
enhances synaptic transmission in the BNSTrh during
adulthood [82], suggesting the estrogen rise during pu-
berty could lead to increased infanticide. Indeed, pu-
bertal development is accompanied by drastic changes in
steroid hormones, which can alter gene expression and
synaptic wiring [83]. Importantly, a recent study from
Jamieson et al. discovered a form of pre-pubertal synaptic
plasticity; microglia engulf immature dendritic_spines
and enhance excitatory transmission to MPOA% neu-
rons, to facilitate parenting in juvenile mice [84].

Neuromodulators as dial knobs on the parental
circuit

In addition to hormones, neuromodulators fine-tune
parenting circuits. In addition to dopamine, serotonin
has been found necessary for postpartum maternal care
[7], possibly by interacting with the oxytocin system to
mediate the reward value of pups [78]. Norepinephrine
(NE) is a useful example for examining how neuro-
modulators interact with hormones to facilitate maternal
behaviors. Locus coeruleus NE neurons are active
acutely during pup retrieval and modulate their tonic
activity throughout maternal behaviors to convey a state
of maternal arousal [85]. NE can directly act on the
MPOA to influence pup retrieval [86] and modulate the
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sensitivity of ACC neurons to pups [45], allowing
maternal behaviors to be expressed flexibly. Knocking
out dopamine B-hydroxylase, the enzyme that synthe-
sizes NE, reduces pup retrieval and pup survival, but
restoration of NE prior to parturition reinstates maternal
behavior [87]. Together with hormones and experience,
NE can act on the parental circuit to effectuate a
maternal state shift.

Conclusions and future directions

Over the last several decades, considerable progress has
been made in identifying the discrete circuit compo-
nents involved in parenting. We have outlined the
neural pathways mediating the positive and negative
control of parental behaviors, as well as several mecha-
nisms by which these regions can be recruited. However,
many questions remain. First, parental onset occurs at
diverse timescales; nulliparous females show maternal
behavior within days of sensitization, while males
become parental weeks after mating. What governs the
activation of the parental circuit over these timescales?
Long-term behavioral recordings [10] and neuro-
modulatory monitoring tools [88] could clarify how cir-
cuit plasticity unfolds. Additionally, while this review
focused on the onset of parenting in adults, there is a
paucity of mechanistic studies investigating how these
behaviors are developmentally regulated or how they
wane across time. Addressing these questions is impor-
tant to advancing our basic understanding of how the
parental circuit functions and how it may be dysregu-
lated in psychiatric conditions.
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