

Estrogen Control of Social Behaviors

Oluwadamilola O. Lawal,¹ Dayu Lin,²
and Julieta E. Lischinsky¹

¹Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
email: julieta.lischinsky@nih.gov

²Neuroscience Institute, Department of Psychiatry, and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA;
email: dayu.lin@nyulangone.org

ANNUAL REVIEWS CONNECT

www.annualreviews.org

- Download figures
- Navigate cited references
- Keyword search
- Explore related articles
- Share via email or social media

Annu. Rev. Neurosci. 2025. 48:125–47

First published as a Review in Advance on
February 21, 2025

The *Annual Review of Neuroscience* is online at
neuro.annualreviews.org

<https://doi.org/10.1146/annurev-neuro-112723-041639>

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See credit lines of images or other third-party material in this article for license information.

Keywords

estrogen, estrogen receptor alpha, social behaviors, social behavior network, hormones

Abstract

Social behaviors, including parental care, mating, and fighting, all depend on the hormonal milieu of an organism. Decades of work highlighted estrogen as a key hormonal controller of social behaviors, exerting its influence primarily through binding to estrogen receptor alpha (ER α). Recent technological advances in chemogenetics, optogenetics, gene editing, and transgenic model organisms have allowed for a detailed understanding of the neuronal subpopulations and circuits for estrogen action across *Esr1*-expressing interconnected brain regions. Focusing on rodent studies, in this review we examine classical and contemporary research demonstrating the multifaceted role of estrogen and ER α in regulating social behaviors in a sex-specific and context-dependent manner. We highlight gaps in knowledge, particularly a missing link in the molecular cascade that allows estrogen to exert such a diverse behavioral repertoire through the coordination of gene expression changes. Understanding the molecular and cellular basis of ER α 's action in social behaviors provides insights into the broader mechanisms of hormone-driven behavior modulation across the lifespan.

Contents

INTRODUCTION	126
THE PROFOUND IMPACT OF ESTROGEN ON SOCIAL BEHAVIORS	126
ESTROGEN MODULATES SOCIAL BEHAVIORS MAINLY	
THROUGH ER α	128
ESTROGEN MODULATES SOCIAL BEHAVIOR THROUGH ER α	
IN THE SOCIAL BEHAVIOR NETWORK	128
ESR1-EXPRESSING CELLS DRIVE SOCIAL BEHAVIORS	130
Aggression	130
Male Sexual Behaviors	134
Female Sexual Behaviors	135
Parental and Infantidal Behaviors	136
THE INTRACELLULAR ACTIONS OF ESTROGEN	138
CONCLUDING REMARKS AND OPEN QUESTIONS	140

INTRODUCTION

Going through puberty, experiencing pregnancy, parenting a child, undergoing menopause or andropause, we experience hormonal changes throughout our lives. Some of these changes have longer timescales, such as giving birth and caring for a child, while others, such as ovulatory cycles, show plastic changes in shorter timescales. Hormones are chemical substances synthesized and released from endocrine glands into the bloodstream. They play crucial roles in aligning physiological responses with behaviors, such as increasing sexual receptivity during ovulation. Hormones readily pass the blood-brain barrier and exert their actions in the brain. Estrogens, progestogens, and androgens are three sex steroid hormones released from the gonads and adrenal glands and are involved in the organization and activation of social behaviors. Estrogen is perhaps the best studied, with 17 β -estradiol (E2) being its most common active form, exerting its effect through binding to estrogen receptors, resulting in both genomic and nongenomic downstream effects. Although it is generally considered a female sex hormone produced by the ovaries, estrogen is also abundantly present in the male brain by aromatizing androgen, a process mediated by brain-synthesized aromatase. There are three classes of estrogen receptors: estrogen receptor α (*Esr1*, protein: ER α), estrogen receptor β (*Esr2*, protein: ER β), and G protein-coupled estrogen receptor 1 (GPR30/GPER1). ER α is the most broadly expressed form in the central nervous system (Ehret & Buckenmaier 1994, Mitra et al. 2003, Morishita et al. 2023, Perez et al. 2003). How does ER α regulate each social behavior circuit to ensure that the proper behavior is expressed at the appropriate time in a sex-specific manner? Here, we discuss the ER α mechanisms of action, including the role of *Esr1* and the *Esr1*-expressing cells. We focus on the rodent literature due to vast technical advances in the last few decades, which enable the precise targeting and manipulation of *Esr1*-expressing neurons and profiling of ER α activation-induced genomic and transcriptomic changes.

THE PROFOUND IMPACT OF ESTROGEN ON SOCIAL BEHAVIORS

Classic studies over 50 years ago provided the groundwork for the role of gonadal hormones in the organization and activation of social behaviors. These early studies examined changes in social behaviors in rodents after removing their gonads (**Supplemental Table 1**). When adult male mice were castrated, they no longer showed territorial aggression, which could be restored by

testosterone or estrogen supplementation (Barfield et al. 1972, Christie & Barfield 1979, Edwards & Burge 1971, Gandelman 1980, Luttge 1972, Simon & Whalen 1986, Uhrich 1938). Chronic exposure to testosterone increased aggression in less aggressive male and female mice (Barkley & Goldman 1977, Martínez-Sanchis et al. 2003). Estrogen administration in adult male rodents resulted in increased aggression in mice housed in short photoperiods (winter-like) but not in mice housed in long photoperiods (spring-like), most likely through fast nongenomic effects (Silva et al. 2010; Trainor et al. 2007, 2008). Interestingly, preventing the aromatization of testosterone to estrogen or administering testosterone with antiestrogen, an estrogen receptor antagonist, prevented the recovery of aggression in castrated male mice, suggesting the aggression-promoting effect is mediated by estrogen instead of testosterone (Bowden & Brain 1978, Clark & Nowell 1979, Luttge 1979).

The critical role of estrogen in aggression starts during early development through its involvement in masculinizing the brain. After birth, the ovaries are quiescent, whereas neonatal testes are active and produce testosterone. Due to the minimal expression of androgen receptors in the neonatal rodent brain, testosterone exerts its action mainly through its conversion to estrogen and binding to estrogen receptors (Juntti et al. 2010; MacLusky et al. 1985, 1987; Naftolin et al. 1972; Reddy et al. 1974; Ryan et al. 1972). Neonatal testosterone or estrogen exposure was sufficient to induce male-like aggression in females, highlighting the critical role of estrogen in the development of male-typical aggression (Edwards 1971, Wu et al. 2009).

Gonadal hormones also profoundly affect sexual behaviors. Castrated male mice rarely mounted females, which could be rescued by either testosterone or estrogen administration (Edwards 1969, Edwards & Burge 1971). Similarly, ovariectomized females rarely became sexually receptive, measured as the probability of expressing lordosis—a back arched-down posture to facilitate male mounting—and instead, rejected the male mounting attempts, which could be later recovered by administration of estrogen and progesterone (Martini et al. 2011, Ring 1944, Thompson & Edwards 1971). Administration of testosterone in adult intact male rodents that were slow to ejaculate did not decrease ejaculation latency (Antonio-Cabrera & Paredes 2012). However, neonatal testosterone administration decreased the age to first ejaculation (Campbell & McGill 1970), indicating the importance of timing in the gonadal hormone's effect on sexual behaviors. Estrogen administration in intact adult male rodents either decreased sexual behaviors or caused no change, depending on the sexual experience of the subjects (Antonio-Cabrera & Paredes 2012, Davidson & Allinson 1969, Södersten 1973). Aromatase knockout (ArKO) male mice, which are unable to synthesize endogenous estrogen from testosterone, were mostly infertile and showed major deficits in sexual behaviors (Matsumoto et al. 2003). ArKO female mice showed reduced receptivity (Bakker et al. 2002). Importantly, the sexual receptivity deficit in ArKO females could only be rescued if estrogen was applied between postnatal day (P)15 and P25, suggesting a critical role of estrogen during the development of the female sexual behavior circuit (Bakker et al. 2002, Brock et al. 2011).

The role of sex steroid hormones in parental behaviors is less clear. Castrated adult male mice and ovariectomized females retrieved significantly more pups than intact virgin males and females, but these effects appear strain dependent (Okabe et al. 2010). Others reported no change in parental behaviors in gonadectomized male mice (Gatewood et al. 2006). Nonetheless, an injection of estradiol benzoate (EB) in ovariectomized and hysterectomized virgin female rats was sufficient to promote pup retrieval and lactating postures over foster pups (Siegel & Rosenblatt 1975a,b; Siegel et al. 1978). Similar to the organizational role of estrogen in aggression and sexual behavior circuits during development, the parental behavior circuit also depends on prepubertal sex hormones. Male and female mice gonadectomized at P25 showed reduced pup retrieval and parental behaviors regardless of treatment with EB in adulthood (Kercmar et al. 2014).

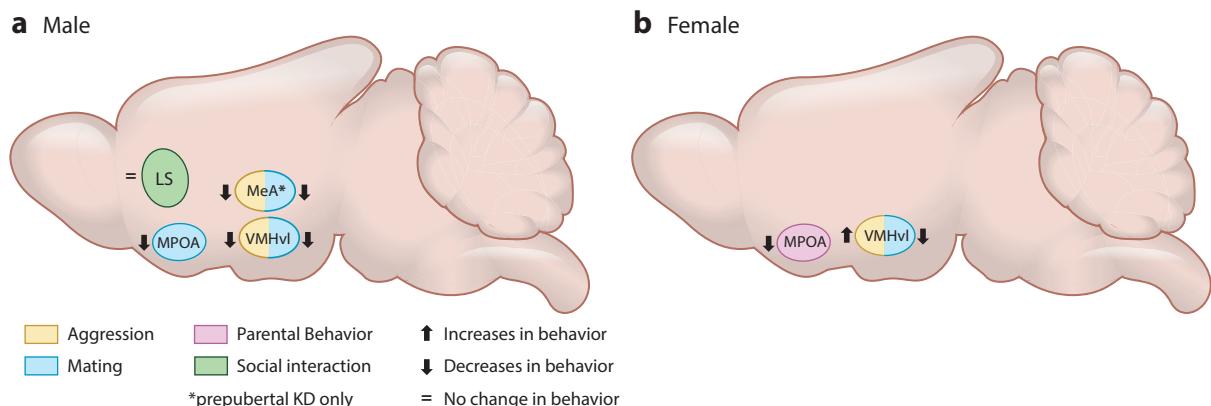
ESTROGEN MODULATES SOCIAL BEHAVIORS MAINLY THROUGH ER α

The two primary estrogen receptors, ER α and ER β , are both nuclear receptors composed of a ligand-independent transactivation domain, a hormone-dependent transactivation domain, and a DNA binding domain and function as transcription factors upon activation (Kumar et al. 2011). Consistent with castration-induced behavior changes, *Esr1* knockout (KO) male mice exhibit significantly reduced levels of aggression compared to wild-type and heterozygous mice (Ogawa et al. 1998b). *Esr1* KO mice carry male-typical pheromones as they can elicit attack from resident wild-type mice (Ogawa et al. 1997). Furthermore, daily testosterone propionate injections, which restore aggression in wild-type gonadectomized mice, fail to induce aggressive behaviors in gonadectomized *Esr1* KO mice, suggesting that ER α is crucial for testosterone's effect on male aggression (Ogawa et al. 1998b).

Global *Esr1* deletion also revealed the role of ER α in sexual behaviors. Although *Esr1* KO male mice showed normal motivation to mount females, they achieved fewer intromissions, virtually never ejaculated, and were infertile (Ogawa et al. 1997, 1998b). *Esr1* deletion, exclusively in the brain, did not result in infertility but drastically reduced sexual behaviors in male mice (Trouillet et al. 2022). These findings suggest that ER α is not essential for the initiation but is necessary for the continuation and completion of sexual behaviors. Both *Esr1* KO and central nervous system *Esr1* deletion in female mice showed profoundly impaired sexual behaviors and increased rejection toward males (Ogawa et al. 1998a, Trouillet et al. 2022). They did not exhibit lordosis even when treated with estrogen or a combination of estrogen and progesterone (Kudwa & Rissman 2003; Ogawa et al. 1996, 1998a; Trouillet et al. 2022). *Esr1* KO females are often vigorously attacked by the males as if they are male intruders, suggesting the crucial role of ER α in facilitating sexual behaviors and the production of appropriate pheromones for mate recognition by males (Ogawa et al. 1996).

ER α also plays a role in parental behaviors. Male mice lacking *Esr1* retrieved pups with similar latency to wild-type males but exhibited a significantly higher rate of infanticide (Ogawa et al. 1998b). *Esr1* KO females also showed infanticide, which is extremely rare in their wild-type counterparts. Additionally, the noninfanticidal *Esr1* KO females retrieved significantly fewer pups and had longer latencies to retrieve pups compared to wild-type females (Ogawa et al. 1996, 1998a).

Social behavior deficits caused by *Esr1* KO appear mostly due to the loss of *Esr1* in GABAergic but not glutamatergic neurons (Wu & Tollkuhn 2017). Deletion of *Esr1* in GABAergic neurons expressing the vesicular GABA transporter (*Vgat* $+$) led to marked deficits in mating and territorial marking behaviors, including a significant reduction in the percentage of males that achieve ejaculation and a decrease in territorial urine marking (Wu & Tollkuhn 2017). In contrast, the deletion of *Esr1* in glutamatergic neurons expressing the vesicular glutamate transporter 2 (*Vglut2* $+$) did not significantly alter male-typical behaviors.


Unlike *Esr1* KO mice, *Esr2* KO males exhibit normal intermale aggression and even attack more than wild-type males in initial aggression tests (Ogawa et al. 1999). *Esr2* KO mice also show no deficiencies in sexual behaviors in males and sexual receptivity and lordosis in females (Ogawa et al. 1999). These results suggest that ER β likely plays a relatively minor role in mediating the effect of estrogen on social behaviors.

ESTROGEN MODULATES SOCIAL BEHAVIOR THROUGH ER α IN THE SOCIAL BEHAVIOR NETWORK

The earlier castration and gene KO experiments demonstrated the critical roles of estrogen and its receptors in enabling the proper expression of social behaviors. In parallel, a series of lesioning,

electric stimulation, and pharmacological experiments revealed critical brain regions essential for social behaviors, which include the medial preoptic area (MPOA), ventromedial hypothalamus (VMH), medial amygdala (MeA), bed nucleus of the stria terminalis (BNST), and lateral septum (LS) (Helmy et al. 2020, Wei et al. 2021, Yu et al. 2020). Based on functional and immediate early gene studies of these regions, Newman (1999) proposed the social behavior network (SBN) for mediating social behaviors in mammals. The SBN comprises six interconnected regions, including the MeA, BNST, MPOA, anterior hypothalamus (AHN), LS, VMH, and midbrain [including periaqueductal gray (PAG) and tegmentum]. This framework was later expanded to other vertebrates, including birds and fish, by Goodson (2005). Interestingly, a common feature of these social behavior-activated regions is the abundant expression of ER α (Ehret & Buckenmaier 1994). In recent years, additional brain regions that are functionally important for social behaviors have been identified (see below), and high ER α expression levels remain a common feature of these newly identified social regions.

Given the abundant expression of ER α in the SBN, one natural question is whether SBN ER α expression is important for social behaviors. To address this, researchers employed RNA interference or small hairpin RNA to knock down ER α in specific brain regions (Figure 1). Sano et al. (2013) knocked down ER α in the male VMH and found that both aggression and sexual behaviors were reduced. Interestingly, although knocking down ER α in the VMH of female mice diminished sexual receptivity (Musatov et al. 2006), it increased, instead of decreased, aggression in female rats (Spiteri et al. 2010). Knocking down ER α in the MPOA of male mice reduced male sexual behaviors (Sano et al. 2013), while a similar manipulation in the female MPOA impaired parental behaviors (Ribeiro et al. 2012). ER α knockdown in the MeA during adulthood did not impair male aggression or sexual behaviors (Sano et al. 2013). However, prepubertal MeA ER α knockdown reduced both behaviors later in adulthood, suggesting ER α mainly plays an organizational role in the MeA (Sano et al. 2016). In the LS of male mice, knockdown of ER α did not result in changes in social interactions with other males (neither aggression nor sexual

Figure 1

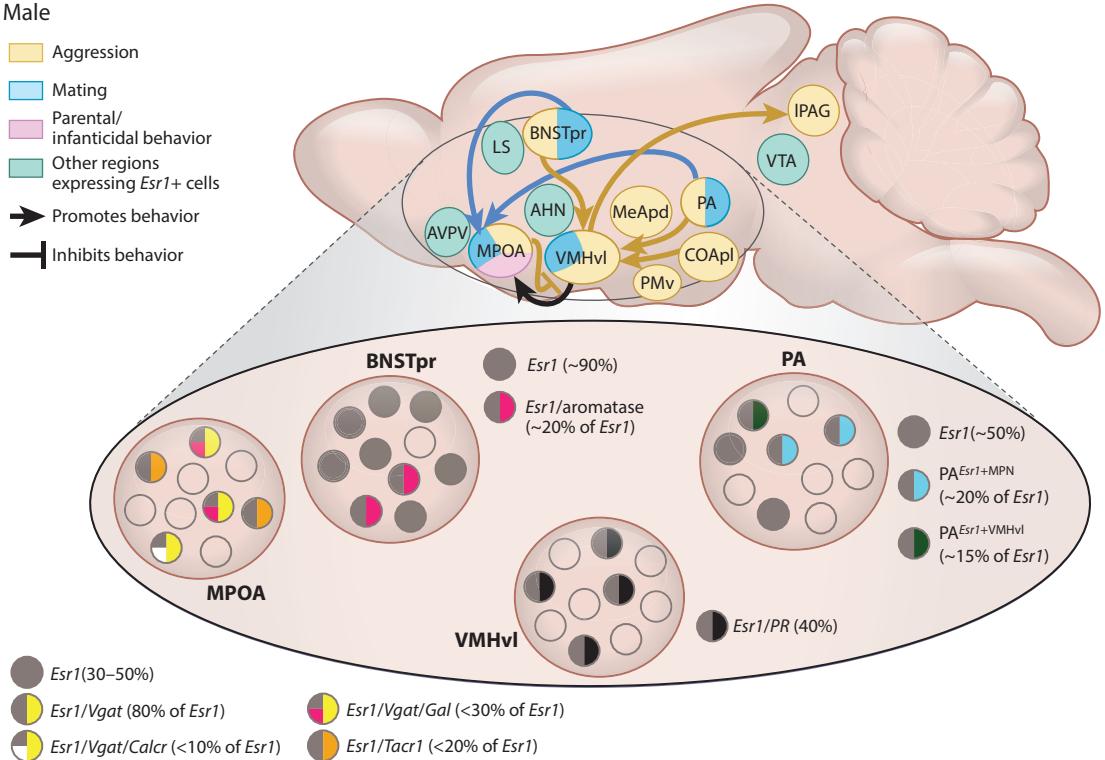
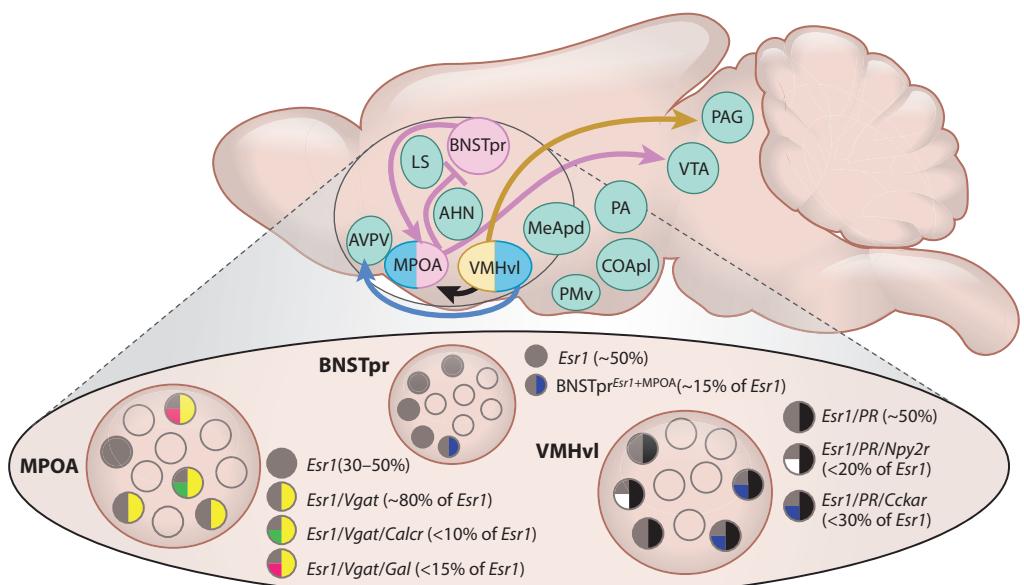
Functional role of ER α in the SBN during social behaviors in male and female rodents. To determine whether ER α was necessary for distinct social behaviors in a region-specific manner, studies performed RNA interference or small hairpin RNA ER α KD during social behaviors in a subset of SBN regions in males (a) and females (b). Some regions exhibited deficits in multiple social behaviors during unique developmental stages (i.e., MeA), while other regions showed sexually dimorphic differences (i.e., VMHvl and MPOA), and not all resulted in behavioral changes (i.e., LS). These findings highlight how ER α function during social behaviors is sex-, region-, and developmental stage-specific. Abbreviations: ER α , estrogen receptor α ; KD, knockdown; LS, lateral septum; MeA, medial amygdala; MPOA, medial preoptic area; SBN, social behavior network; VMHvl, ventrolateral part of the ventromedial hypothalamus.

behaviors were assessed), but instead, deficits in social interactions were present after ER β knock-down (Hasunuma et al. 2024). Thus, ER α modulates social behaviors in a region-, sex-, and developmental stage-specific way (Figure 1).

ESR1-EXPRESSING CELLS DRIVE SOCIAL BEHAVIORS

Estrogen acts on ER α to modulate cell responses and, ultimately, behavior output. Hence, cells expressing ER α must be critical in mediating social behaviors. Based on this rationale, recent works have focused on investigating *Esr1*-expressing cells in social behaviors. Advances in genetic tools for manipulating and recording specific cell types paired with computational models have allowed for precise and detailed characterization of the function, circuit, and neural computation of ER α + cells (Figure 2).

Aggression



Evr1+ cells broadly increase activity during aggressive encounters. We recently recorded calcium signals of *Esr1*-expressing cells in 13 brain regions of the limbic system and found that 12 out of 13 significantly increased activity during attack (Guo et al. 2023). Based on the relative response patterns during mating and fighting, we proposed an aggression-biased network (ABN) and a mating-biased network (MBN). The ABN includes the ventrolateral part of the ventromedial hypothalamus (VMHvl), ventral premammillary nucleus, the posterior dorsal subdivision of MeA (MeApd), dorsomedial hypothalamus, AHN, and lateral periaqueductal gray, which are preferentially activated during male aggression. The ABN is an expansion of the core aggression circuit we previously proposed (Lischinsky & Lin 2020). Some regions in the MBN, such as the posterior amygdala (PA, also termed amygdalohippocampal area) and BNST, are also activated during attack, although their responses are higher during male sexual behaviors.

The VMHvl is a core region for aggression and aggression-seeking behavior (Falkner et al. 2014, 2016; Lin et al. 2011). We initially found that unselective optogenetic stimulation of the VMHvl cells could trigger immediate and robust attacks in male mice, even toward suboptimal targets, such as females and inanimate objects (Lin et al. 2011). Conversely, chemogenetic silencing of VMHvl neurons significantly reduced aggressive behaviors (Lin et al. 2011). VMHvl cells expressing *Esr1* (VMHvl^{*Esr1*}), which comprise half of the cells in the region, show a preferential overlap with aggression-induced c-Fos in both males and females, prompting the investigation of their roles in aggression (Hashikawa et al. 2017, Lee et al. 2014). Interestingly, VMHvl^{*Esr1*} neurons control both sexual and aggressive behaviors in an intensity-dependent manner. Weak optogenetic activation of VMHvl^{*Esr1*} cells (≤ 1.4 mW/mm 2) induced sniffing, close investigation, and mounting toward both male and female mice, whereas strong activation (> 3 mW/mm 2) prompted male mice to attack (Lee et al. 2014). Conversely, optogenetic inhibition of *Esr1*+ cells rapidly halted ongoing attacks and prevented the initiation of new attacks, although it did not terminate mating (Lee et al. 2014). This finding suggests that these neurons are required to initiate and sustain aggressive actions. To better understand the neuronal dynamics of these cells at the population level, Nair et al. (2023) employed an unsupervised dynamical systems method to analyze the activity of VMHvl^{*Esr1*} cells during social interactions. They revealed that VMHvl^{*Esr1*} cells encoded aggression through an approximate line attractor, by which an aggressive internal state escalates as the neural activity progresses along the attractor and as neurons integrate inputs over time to maintain an aggressive state. This model is unique to the VMHvl and does not apply to MPOA during either aggression or mating, where behaviors are represented via a cell identity code instead.

In a separate study, Yang et al. (2013) found that selective ablation of VMHvl progesterone receptor (VMHvl^{PR}) cells, the majority ($> 92\%$) coexpressing *Esr1*, in male mice decreased

a Male

- Aggression
- Mating
- Parental/infanticidal behavior
- Other regions expressing *Esr1*+ cells
- Promotes behavior
- Inhibits behavior

b Female

(Caption appears on following page)

Figure 2 (Figure appears on preceding page)

Function, circuit, and molecular cytoarchitecture of *Esr1*-expressing regions across sexes. All regions of the SBN as well as additional regions recently implicated in social behaviors express *Esr1* in both males (*a*) and females (*b*). These regions can be further classified based on *Esr1*-expressing cell function and neuronal activity during aggression, mating, and parental/infanticidal behaviors, establishing behavioral-specific networks by which *Esr1*-expressing cells can promote or inhibit specific behaviors. Interestingly, several regions in the network, such as the MPOA and VMHvl in both males and females, have dual functions by which activation of *Esr1*-expressing cells can result in distinct social behaviors that are dependent on their circuit connectivity and the *Esr1* subpopulation being targeted.

Despite a clear function of *Esr1*-expressing cells in males during social behaviors, the role of *Esr1*-expressing cells in multiple regions of the female brain, such as the PA, PMv, and COApl, remains understudied. Other regions expressing ER α , such as the VTA and LS in males and PMv in females, play a role in social behaviors, but whether the *Esr1* $+$ cells are driving those behaviors needs to be further investigated. Additionally, we present zoomed-in schematics of several SBN regions that have been studied in depth and highlight their vast molecular diversity, which is sexually dimorphic, with some regions, such as the VMHvl, possessing additional anatomical differences in cell distribution. Abbreviations: AHN, anterior hypothalamic nucleus; AVPV, anteroventral periventricular nucleus; BNSTpr, principal nucleus of the bed nucleus of the stria terminalis; *Calcr*, calcitonin receptor; *Cckar*, cholecystokinin A receptor; COApl, posterolateral cortical amygdala; *Esr1*, estrogen receptor 1; *Gal*, galanin; IPAG, lateral periaqueductal gray; LS, lateral septum; MeApd, posterodorsal part of the medial amygdala; MPOA, medial preoptic area; *Npy2r*, neuropeptide Y receptor type 2; PA, posterior amygdala; PMv, ventral premammillary nucleus; *PR*, progesterone receptor; SBN, social behavior network; *Tacr1*, tachykinin receptor 1; *Vgat*, vesicular GABA transporter; VMHvl, ventrolateral part of the ventromedial hypothalamus; VTA, ventral tegmental area.

aggression toward intruder males (Figure 2*a*). Interestingly, the VMHvl^{PR} cell control of aggression varies with the social context but not the hormonal state of the animal. Chemogenetic activation of these cells induced attack more efficiently in solitary animals than group-housed animals but was similarly effective in intact and castrated males (Yang et al. 2017). One potential explanation for this result is that social context may modulate the aggression circuit downstream of the VMHvl, whereas estrogen modulates aggression mainly through VMHvl and its upstream regions, which could thus be overridden when VMHvl cells are artificially activated. Additionally, VMHvl^{PR} neurons were activated when a mouse observed others fighting, suggesting their potential roles in not only driving but also perceiving aggression, which may enable the animals to learn from observation and facilitate more nuanced social interactions (Yang et al. 2023).

The responses of VMHvl^{Esr1} cells are not fixed. Miniature endoscopic imaging revealed overlapping response patterns of VMHvl cells to male and female conspecifics in inexperienced adult male mice (Remedios et al. 2017). Interestingly, VMHvl^{Esr1} responses became sex-specific after experiencing a 30-min interaction with a female and led to increases in aggressiveness toward a male intruder. Stagkourakis et al. (2020) investigated how fighting experience alters the synaptic strength of VMHvl^{Esr1} neurons. They found that repeated fighting increased aggression levels in male mice as well as the frequency and amplitude of spontaneous excitatory postsynaptic currents of VMHvl^{Esr1} neurons. Recently, we further discovered that VMHvl^{Esr1} cells undergo three-phase plasticity over 10 days of repeated winning, including a monotonic synaptic potentiation between long-range input and VMHvl cells, a transient enhancement of VMHvl cell local connection, and a delayed increase in excitability (Yan et al. 2024). These plasticity events are causally linked, increasing the VMHvl responses to aggression-provoking cues and the animal's aggressiveness (Yan et al. 2024). Therefore, social experience modifies aggression by inducing multiple forms of plasticity in the aggression circuit.

VMHvl^{Esr1} cells also play an important role in female aggression. Although initial optogenetic activation of VMHvl^{Esr1} cells in C57BL/6 virgin female mice only induced social investigation and occasionally mounting behaviors (Lee et al. 2014), our later studies found that activating VMHvl^{Esr1} neurons in virgin Swiss Webster (SW) female, lactating C57BL6 female, and lactating SW female mice induced attacks toward juvenile intruders (Hashikawa et al. 2017). This behavioral difference likely lies in endogenous differences in the aggression circuit between virgin C57 and SW females, with the former showing nearly no aggression naturally, suggesting a likely

hypoactive circuit due to domestication. Additionally, chemogenetic inhibition of VMHvl^{Esr1} cells in female mice, regardless of the animal's genetic background or reproductive stage, significantly reduced and sometimes abolished aggression against intruders (Hashikawa et al. 2017). However, female VMHvl aggression cells differed from those of males in that aggression-activated cells in females (based on c-Fos) are concentrated in the medial part of the VMHvl, while those in males spread throughout the VMHvl. Bulk transcriptomic analysis revealed differential gene expression patterns in the medial and lateral parts of the VMHvl (Hashikawa et al. 2017). For example, cholecystokinin A receptor (*Cckar*) is uniquely expressed in the lateral VMHvl. At the output level, while the lateral VMHvl projects to areas involved in female reproductive behavior, such as the anteroventral periventricular nucleus (AVPV), medial VMHvl cells project preferentially to regions associated with aggression, such as the PAG (Hashikawa et al. 2017). Later, detailed single-cell RNA sequencing revealed over a dozen molecularly distinct clusters within VMHvl^{Esr1} cells (Kim et al. 2019). Interestingly, the cluster marked by *Cckar* is found exclusively in females, not males, suggesting that the lateral VMHvl could be a female-specific structure. In a follow-up study, Liu et al. (2022) identified VMHvl neuropeptide Y receptor type 2 (VMHvl^{Npy2r}) cells, a subset of the VMHvl^{Esr1} cells, as the aggression-activated VMHvl cells in females. Optogenetic activation of VMHvl^{Npy2r} in both virgin and lactating females evoked time-locked attacks toward male and female intruders (Liu et al. 2022). In contrast, activation of VMHvl^{Esr1} neurons that do not express Npy2r suppressed maternal aggression in lactating females (Liu et al. 2022). Thus, VMHvl^{Npy2r} cells, a subset of VMHvl^{Esr1} cells concentrated in the medial VMHvl, are the critical population for mediating female aggression (**Figure 2b**).

PA cells expressing *Esr1* (PA^{Esr1}) are a major excitatory input to the VMHvl (Yamaguchi et al. 2020). The PA^{Esr1} to VMHvl-projecting (PA^{Esr1 → VMHvl}) neurons were active during aggressive interactions, and pharmacogenetic or optogenetic activation of these neurons induced attack, while their inhibition reduced aggression (Yamaguchi et al. 2020). PA^{Esr1 → VMHvl} neurons receive excitatory inputs from various brain regions, including the hippocampus and cortical areas involved in olfactory processing, making them well-positioned to integrate sensory and contextual information to modulate social behaviors (Yamaguchi et al. 2020) (**Figure 2a**).

Posterior cortical amygdala *Esr1*-expressing cells (COApI^{Esr1}) represent another excitability input to the VMHvl and also play a role in aggression. COApI^{Esr1} cells in male mice showed increased activity during social investigation before attacks (Scott et al. 2023). Inhibiting COApI^{Esr1} projections to the VMHvl and central amygdala decreased aggression and increased social investigation. The COApI^{Esr1}-VMHvl modulation on aggression appears male-specific, as similar manipulations did not affect aggressive behavior in female mice (Scott et al. 2023).

The principal component of the bed nucleus of the stria terminalis (BNSTpr) provides dense GABAergic inputs to the VMHvl. Nonetheless, ablation of BNSTpr aromatase-expressing cells, a subset of *Esr1*+ cells, suppressed male aggression but not maternal aggression (Bayless et al. 2019). The male-specific role of BNSTpr in aggression may not be surprising given that this is a sexually dimorphic region, twice bigger in male than female rodents (Hines et al. 1992). Consistent with the ablation results, optogenetic silencing of BNSTpr *Esr1*-expressing neurons (BNSTpr^{Esr1}) during sniffing blocked the transition from investigation to attack in male mice, whereas silencing the cells during attack terminated ongoing attacks (Yang et al. 2022). Miniscope calcium imaging of BNSTpr^{Esr1} cells revealed their largely distinct responses to female and male conspecifics, with a higher proportion of cells responding to females (Yang et al. 2022). Interestingly, silencing BNSTpr^{Esr1} neurons altered the sex-tuning bias of VMHvl^{Esr1} cells from male dominant to female dominant (Yang et al. 2022). The circuit mechanism through which BNSTpr^{Esr1} cells alter VMHvl^{Esr1} cell responses to social cues remains to be investigated.

MPOA reciprocally connects with the VMHvl and similarly expresses ER α densely (Fang et al. 2018, Karigo et al. 2021, Wei et al. 2018, Wei et al. 2023). While females preferentially activated the rostral MPOA Esr1 cells in male mice, caudal MPOA $Esr1+$ (cMPOA Esr1) cells showed higher responses to males (Wei et al. 2023). Interestingly, cMPOA Esr1 cells inhibited instead of promoted aggression. Chemogenetic inhibition of these cells increased aggression toward both male and female intruders, while their activation suppressed intermale aggression. Thus, the MPOA Esr1 cells bidirectionally modulate aggression via direct inhibitory projections to the VMHvl. Interestingly, cMPOA Esr1 cells increased their response specifically to a stronger male opponent after defeat, suggesting that the cells can evaluate the fighting capability of the opponent and put a break on the aggression circuit to prevent conflict with a superior conspecific (Wei et al. 2023). When the cMPOA Esr1 cells were optogenetically inhibited, the defeated animal attacked the winners and ended up suffering more attacks.

A relevant *Esr1*-expressing region in the ABN is the MeApd. *Esr1+* cells in the MeApd are highly responsive during intermale attack in male mice (Guo et al. 2023). However, whether these cells are required for territorial aggression has yet to be tested. The GABAergic cells in this region (Hong et al. 2014), as well as subpopulations expressing aromatase (Unger et al. 2015), and recently the transcription factor Foxp2 (Lischinsky et al. 2023) have been shown to play a functional role in territorial aggression. Interestingly, the MeApd Foxp2+ cells comprise only approximately 10% of the total *Esr1*-expressing subpopulation and have limited coexpression with aromatase-expressing cells (Lischinsky et al. 2017). Furthermore, MeA subpopulations projecting to the BNST, including those expressing the dopamine D1 receptor (Miller et al. 2019), neuropeptide Y receptor type 1 (Padilla et al. 2016), and calcium/calmodulin-dependent protein kinase 2 (Nordman et al. 2020), can promote aggression. Therefore, both *Esr1+* and *Esr1-* subpopulations in the MeA could be required for aggression. Whether *Esr1+* cells are directly or indirectly regulating the function of *Esr1-* cells for aggressive behaviors remains to be studied.

Male Sexual Behaviors

Sexual behaviors are composed of mounting, intromission, and ejaculation in male mice and lordosis in female mice. Thus, they fundamentally differ between the sexes and, unsurprisingly, are supported by distinct neural circuits in males and females. Nevertheless, *Esr1+* cells are essential for both male and female sexual behaviors. Our recent recording of *Esr1+* cells throughout the limbic system in male mice revealed their robust and dynamic activity changes during mating. The MPOA, BNSTpr, PA, and anterior MeA show preferential activation during mating versus fighting and constitute the MBN (Guo et al. 2023) (**Figure 2a**).

The MPOA is the best-known region for driving male sexual behaviors based on lesion studies from decades ago. Wei et al. (2018) first reported the responses of male MPOA Esr1 cells using bulk calcium recording and showed that these cells increase their activity during female investigation and mounting. Ablating or inhibiting MPOA Esr1 cells reduced mounting and intromission by male mice, while optogenetic activation of MPOA Esr1 neurons induced male-typical mounting in male and female mice. The induction of mounting in females suggests that the male-typical mounting circuit is also present in females but is likely inactive under normal conditions (Wei et al. 2018). Although mounting can be induced by activating MPOA Esr1 cells, the efficiency is relatively low (<50%). Later, Karigo et al. (2021) found that optogenetic stimulation of GABAergic MPOA Esr1 (MPOA $^{Esr1 \cap Vgat}$) cells promoted mounting with nearly 100% efficiency. Furthermore, stimulating MPOA $^{Esr1 \cap Vgat}$ cells evoked ultrasound vocalizations (USVs), which typically accompany natural male sexual behaviors, and these cells show increased activity during female-directed USVs accompanied by mounting. These results established a critical role of MPOA $^{Esr1 \cap Vgat}$ cells in male sexual behaviors.

Unlike the MPOA^{*Esr1* ∩ *Vgat*} stimulation-induced mounting, no USVs were emitted when male mice mounted other conspecifics upon VMHvl^{*Esr1*} stimulation (Karigo et al. 2021, Lee et al. 2014). Consistent with the functional results, VMHvl^{*Esr1*} cells increased activity during USV-free mounting toward a male (Karigo et al. 2021). Thus, the VMHvl^{*Esr1*} activation-induced mounting was proposed to be a dominant instead of sexual behavior (Karigo et al. 2021). Nevertheless, it remains possible that VMHvl^{*Esr1*} cells also play a role in male sexual behaviors as ablating or inhibiting VMHvl^{*Esr1* + *PR*+} neurons in male mice significantly reduced the frequency and duration of mounting and intromission of a female mouse (Karigo et al. 2021, Yang et al. 2013) (**Figure 2a**).

BNSTpr^{*Esr1*} cells densely project to the MPOA and are necessary for male mating behaviors. Silencing of these projections in male mice attenuated the transition from sniffing to mounting (Yang et al. 2022). Directly silencing aromatase-expressing BNSTpr cells eliminated a preference for female pheromones and abrogated mating success (Bayless et al. 2019). Our multisite *Esr1*+ cell recording revealed a unique response pattern of BNSTpr^{*Esr1*} cells during mating, featuring a gradual increase in activity as mating advanced and a strikingly high response during ejaculation (Guo et al. 2023). Recently, Zhou et al. (2023) showed that ejaculation, but not intromission, caused a long-lasting activation of BNSTpr *Esr2*-expressing (BNSTpr^{*Esr2*}) neurons, which largely overlap with *Esr1*-expressing cells (Knoedler et al. 2022). Furthermore, after a series of activation and silencing experiments, Zhou et al. (2023) determined that BNST^{*Esr2*} cells are important for maintaining sexual satiety, referring to a diminished interest in females after the male ejaculates. Therefore, BNSTpr cells could be involved in multiple stages of male sexual behaviors. While BNSTpr^{*Esr2*} cells promote sexual satiety, *Esr1*+ cells (potentially St18-expressing cells) are critical for promoting mounting and intromission (Knoedler et al. 2022).

The MPOA also receives dense projections from PA, which plays an indispensable role in the initiation and execution of sexual behaviors. PA^{*Esr1*} to MPOA-projecting cells were primarily active during mating in males and could bidirectionally modulate mounting toward females (Yamaguchi et al. 2020). Most strikingly, when PA^{*Esr1*}-MPOA cells were inhibited, males nearly lost their ability to initiate mounting and never achieved intromission (Yamaguchi et al. 2020).

Altogether, PA^{*Esr1*}, BNSTpr^{*Esr1*}, and MPOA^{*Esr1*} cells form the core circuit mediating male sexual behaviors (Guo et al. 2023) (**Figure 2a**). Interestingly, during advanced sexual behaviors, *Esr1*+ cells outside of the core mating circuit are broadly inhibited, possibly to ensure the uninterrupted completion of sexual intercourse (Guo et al. 2023).

Female Sexual Behaviors

Esr1+ cells in the VMHvl, instead of the MPOA, are the most important and well-studied population for female sexual behaviors. Ablating VMHvl^{*PR*} cells, which are virtually the same population as VMHvl^{*Esr1*} cells, decreased sexual receptivity and increased rejection of male mounting attempts in female mice (Yang et al. 2013). Female sexual receptivity varies with the estrous cycle. It is high during estrus and low during diestrus. VMHvl^{*PR*} cells show estrous cycle-dependent structure variation. During estrus, there is a multifold increase in presynaptic termini between VMHvl^{*PR*} neurons and AVPV (Inoue et al. 2019, Knoedler et al. 2022). AVPV houses kisspeptin neurons, which also express ER α and are critical for activating gonadotropin-releasing hormone neurons to initiate a luteinizing hormone surge and, ultimately, the estrous cycle (Adachi et al. 2007, Smith et al. 2005, Yin & Lin 2023). Inhibiting these projections resulted in a significant reduction in female sexual receptivity; however, activating these cells failed to promote female receptivity (Inoue et al. 2019). Later, Liu et al. (2022) found that when the VMHvl^{*Esr1*} cells that do not express *Npy2r* (recall that *Npy2r* marks the VMHvl female aggression-related cells) were activated, the sexual receptivity in virgin females significantly increased regardless of the estrous state. Our group and

Knoedler et al. (2022) further demonstrated that lateral VMHvl *Cckar* (VMHvl^{Cckar}) cells, a subset of *Esr1*⁺ cells that are largely distinct from *Npy2r*⁺ cells, can bidirectionally modulate female sexual receptivity (Yin et al. 2022) (Figure 2b). Activating these cells promoted female sexual proceptivity and receptivity acutely, even in ovariectomized females (Yin et al. 2022). Inactivating the VMHvl^{Cckar} cells optogenetically or chemogenetically suppressed females' interest in males and dampened sexual receptivity. VMHvl^{Cckar} cells are specifically activated by male cues, with the highest response during estrus (Yin et al. 2022). The VMHvl to AVPV projection likely mainly originates from the *Cckar*⁺ cells, as 70% of AVPV retrogradely labeled VMHvl cells express *Cckar* (Yin et al. 2022). These results established the central role of VMHvl^{Cckar} cells as a key population for female sexual behaviors. Interestingly, similar to the persistent activity increase of VMHvl^{Esr1} cells in male mice during aggression, VMHvl^{Esr1+Npy2r}⁻ cells in female mice showed similar ramping activity during male interaction, likely reflecting a sexually motivated internal state as mating progresses (Liu et al. 2024, Nair et al. 2023). These neural dynamics were unique to a receptive and hormonal state and were no longer observed when the females were nonreceptive (Liu et al. 2024).

Additional *Esr1*-expressing regions in the SBN have also been implicated in female sexual behaviors. Silencing olfactory inputs to the MeA or the MeA itself resulted in a reduction in male pheromone preference and decreases in lordosis in female mice (Johnson et al. 2021, McCarthy et al. 2017), suggesting the MeA as a possible input to VMHvl^{Esr1} cells for female sexual behaviors. BNST^{St18} cells showed increased activity during female lordosis (Zhou et al. 2023). Whether *Esr1*-expressing cells in these regions are the functionally important population for female sexual behaviors remains to be determined.

Parental and Infanticidal Behaviors

In addition to male sexual behaviors, MPOA^{Esr1} cells also play a critical role in driving parental behaviors in both males and females (Fang et al. 2018, Wei et al. 2018). Bulk calcium and electrophysiological recordings revealed preferential activity increases of MPOA^{Esr1} cells during pup retrieval, among various pup-directed behaviors (Fang et al. 2018, Wei et al. 2018). Ablation or acute optogenetic inhibition of MPOA^{Esr1} cells reduced pup retrieval in virgin females, mothers, and fathers (Fang et al. 2018, Wei et al. 2018). Conversely, optogenetic activation of MPOA^{Esr1} cells promoted pup approach and retrieval in both male and female mice (Fang et al. 2018). MPOA^{Esr1} cells drive parental behaviors at least partly through their projections to the VTA, as MPOA^{Esr1} to VTA-projecting cells showed increases in activity during pup retrieval, and optogenetic activation of this pathway quickly promoted the female to walk out of the nest in a large arena and retrieve a distant pup (Fang et al. 2018). If the stimulation terminated before reaching the pup, the female would often abort the retrieval attempt, suggesting that activity of this pathway is essential for motivating the animal to initiate and complete retrieval. Further experiments demonstrated that MPOA^{Esr1} cells provide strong inhibitory inputs to nondopaminergic neurons in the VTA, resulting in the disinhibition of dopaminergic cells (Fang et al. 2018). MPOA^{Esr1} cell activity changes across reproductive states, with higher excitability, higher *in vivo* responses to pups, and lower baseline firing in lactating animals, effectively increasing the signal-to-noise ratio to pup cues during motherhood (Fang et al. 2018, Mei et al. 2023) (Figure 2b).

MPOA^{Esr1} cells are not a homogeneous population (Figure 2). As discussed above, MPOA^{Esr1} cells can drive both parental and male sexual behaviors. Our single-unit recordings of MPOA cells suggest that adult and pup-responsive cells are largely distinct (Fang et al. 2018). Later, detailed RNA sequencing and multiplexed error-robust fluorescence *in situ* hybridization revealed that calcitonin receptor (*Calcr*)-expressing cells, which comprise less than 10% of *Esr1*⁺ cells, are

preferentially activated during parental but not sexual behaviors (Moffitt et al. 2018, Yoshihara et al. 2021). Yoshihara et al. (2021) found that silencing MPOA^{Calcr} cells disrupted maternal behaviors, while activating the cells suppressed infanticide in males. Knocking down Calcr in females reduced pup retrieval, especially in a risky environment. However, whether MPOA^{Calcr} cells are functionally relevant to only parental behaviors and not sexual behaviors remains to be addressed.

Galatin-expressing MPOA (MPOA^{Gal}) cells have also been suggested as a key population for mediating parental behaviors in both males and females (Wei et al. 2018, Wu et al. 2014). MPOA^{Gal} and MPOA^{Esr1} cells only partially overlap (Ammari et al. 2023, Moffitt et al. 2018). Ablating MPOA^{Gal} cells in nursing females, virgin females, and male parents impaired all parental behaviors and, in extreme cases, led to pup-directed aggression (Wu et al. 2014). Optogenetic activation of male MPOA^{Gal} neurons increased pup grooming but did not induce pup retrieval like MPOA^{Esr1} cells (Wu et al. 2014). A follow-up study further suggests that MPOA^{Gal} cells mediate different aspects of parental behaviors, such as grooming and pup interaction, through projections to different downstream regions, including PAG, VTA, and MeA (Kohl et al. 2018). Although it was not directly addressed whether *Esr1*⁺ or *Esr1*⁻ MPOA^{Gal} cells are responsible for driving parental behaviors, Ammari et al. (2023) recently showed that estrogen and progesterone change the excitability and synapses, respectively, of MPOA^{Gal} cells during pregnancy and cause more robust and selective responses to pup stimuli during lactation, suggesting that the parental behavior-relevant MPOA^{Gal} cells likely express sex hormone receptors and can alter their responses based on the animal's hormonal state.

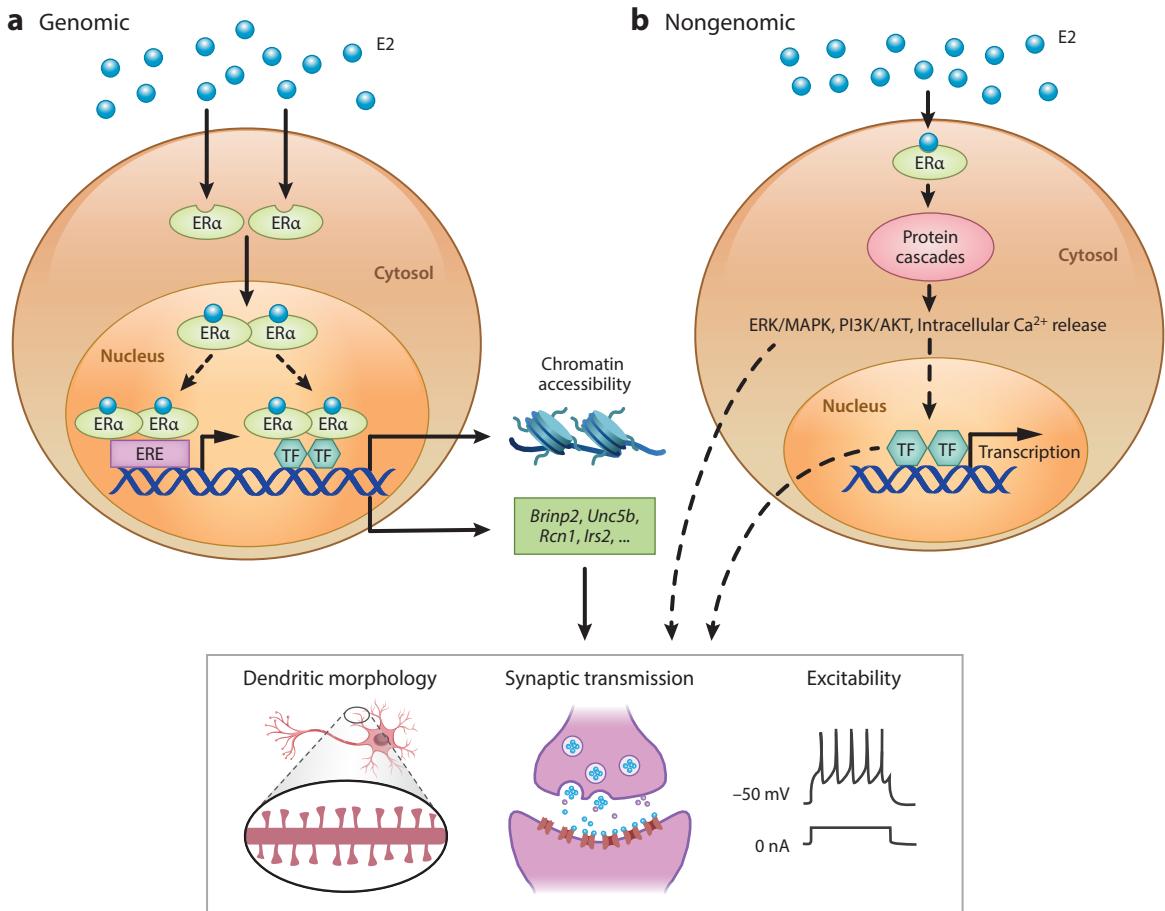
Contrary to MPOA^{Esr1} cell function, BNSTpr^{Esr1} cells promote negative pup-directed behaviors. Population calcium recording revealed that BNSTpr^{Esr1} cells respond more strongly during infanticide in hostile virgin female mice compared to maternal behaviors in mothers (Mei et al. 2023). Optogenetically activating BNSTpr^{Esr1} inputs to the MPOA in noninfanticidal mice suppressed maternal behaviors and induced infanticide (Mei et al. 2023). In contrast, optogenetically inhibiting this pathway reduced pup attack and promoted maternal care in infanticidal female mice. Channelrhodopsin-assisted circuit mapping revealed that BNSTpr^{Esr1} and MPOA^{Esr1} neurons are strongly reciprocally connected mainly through GABAergic synapses. Thus, BNSTpr^{Esr1} and MPOA^{Esr1} cells mediate negative and positive pup-directed behaviors, respectively, and have a seesaw relationship (Mei et al. 2023). Interestingly, BNSTpr^{Esr1} cell excitability decreases during motherhood, whereas MPOA^{Esr1} cell excitability increases, shifting the output balance toward the positive pup-directed behaviors (Mei et al. 2023).

The rhomboid nucleus of the bed nucleus of the stria terminalis (BNSTrh) has also been indicated in mediating infanticide behavior, although ER α expression is weak in this area (Tsuneoka et al. 2015). Fukui et al. (2022) recently found that BNSTrh cells receive increased excitatory synaptic inputs after E2 treatment in castrated males, most likely from the PA^{Esr1} cells. This increase coincides with increased infanticide, hinting at the potential relevance of synaptic changes leading to behavioral change. Although the functional importance of the PA^{Esr1}-BNSTrh pathway remains to be confirmed, estrogen-mediated potentiation of this pathway may be responsible for the increased infanticide from juveniles to adults (Amano et al. 2017).

MeA cells projecting to MPOA also promote infanticide (Mei et al. 2023). Chemogenetic activation of MeA-MPOA cells increased infanticide in virgin female mice (Mei et al. 2023). However, MeA likely also contains cells that are important for parental care as activating GABAergic MeA cells, the main MeA population, induced pup grooming and infanticide in an intensity-dependent manner in male mice (Chen et al. 2019). MeA expresses abundant ER α , although the roles of *Esr1*-expressing MeA cells in infanticide or parental behaviors remain to be tested.

Altogether, a subset of MPOA^{Esr1} cells, likely expressing *Calcr*, are critical for mediating parental behaviors in both males and females. However, upstream regions of MPOA^{Esr1} cells,

including *Esr1*-enriched BNSTpr, PA, and MeA, are mainly important for infanticide (Chen et al. 2019, Mei et al. 2023, Sato et al. 2020). Functions of *Esr1*+ cells in the MPOA^{*Esr1*} downstream regions are not yet clear. Thus, it remains to be investigated whether a parental care circuit composed of *Esr1*+ cells exists, like the case of sexual and aggressive behavior circuits (Figure 2).


THE INTRACELLULAR ACTIONS OF ESTROGEN

How do sex hormones modulate cells in the social behavior circuits to ultimately modulate social behaviors? ER α can exert its intracellular actions through both genomic (long-term: hours to days) (Figure 3a) and nongenomic (short-term: milliseconds to minutes) mechanisms (Figure 3b). Estrogen binding to ER α results in its entrance to the nucleus to modulate gene expression and chromatin accessibility. Recent work by Gegenhuber et al. (2022) identified 1,930 ER α binding sites in BNSTpr, MPOA, and posterior MeA collectively. ER α mainly binds the estrogen-responsive elements, the canonical ER α binding site. Among the genes targeted by ER α , gene ontology analysis uncovered that many are in the categories of synaptic and neurodevelopmental disease, including neurotransmitter receptors, ion channels, and extracellular matrix genes. Additionally, ER α binds to loci encoding neurotrophin receptors (*Ntrk2* and *Ntrk3*) and other sex hormone receptors (androgen and progesterone receptors). The study also revealed over 7,000 chromatin regions that increase accessibility (E2-open) and 123 regions that decrease accessibility (E2-close) with EB treatment. Thus, ER α activation can drastically change the genomic landscape and potentially alter the expression level of thousands of genes.

How does estrogen exactly change gene expression patterns? Given the different estrogen levels in males and females, comparing gene expression patterns between sexes could provide some clues. A more controlled approach involves eliminating the endogenous sex hormones through castration and then comparing the gene expression patterns in castrated versus intact or castrated + hormone-supplemented animals. Early work utilizing microarrays identified dozens of genes that are differentially expressed between sexes and between intact and castrated animals in several *Esr1*-enriched hypothalamic and amygdala regions (Xu et al. 2012). Recent work leveraged novel sequencing tools to reveal many more genes that are under the regulation of estrogen. Bulk sequencing of *Esr1*-expressing cells identified over 300 genes that are up- or downregulated by EB in the BNSTpr (Gegenhuber et al. 2022). Single-nucleus RNA sequencing of *Esr1*+ cells identified an impressive array of 1,415 genes that are differentially expressed across sexes and hormonal states in the BNSTpr, MeA, POA, and VMHvl. A significant portion of identified genes are involved in synaptic transmission, steroid-hormone and reproductive organ processes, and gene expression regulation.

Given that many genes, including those that contribute to neuron wiring (*Brinp2*, *Unc5b*, and *Enab*), synaptic plasticity (*Rcn1* and *Irs2*), and cell excitability (ion channels), are regulated by estrogen, it is not surprising that *Esr1*-expressing cells show sex hormone state-dependent changes in physiological properties, morphology, and connectivity. As mentioned above, maternal behavior-related MPOA^{*Esr1/Gal*} cells increase excitability and spine density during late pregnancy and motherhood due to the combined action of estrogen and progesterone (Ammari et al. 2023, Mei et al. 2023). Infanticide-related BNST^{*Esr1*} cells decrease excitability in lactating females (Mei et al. 2023). VMHvl^{*Cckar*} cells increase excitability and decrease spontaneous inhibitory postsynaptic current frequency during estrus (Yin et al. 2022). VMHvl^{PR} cells, likely the *Cckar*-expressing subpopulation, increase axon density in the AVPV during estrus (Inoue et al. 2019). These changes in synaptic connectivity and cell excitability could collectively alter the input-output relationship of the social behavior circuits and, ultimately, the readiness to express specific social behaviors.

Though less studied, estrogen can induce rapid morphological and electrophysiological changes in a shorter timescale through nongenomic mechanisms (Brann et al. 2022;

Figure 3

Estrogen-dependent genomic and nongenomic effects. Estrogen binding to ER α results in an intracellular cascade leading to short-term nongenomic and/or long-term genomic transcriptional, molecular, and electrophysiological changes. (a) Estrogen's genomic effects result after estrogen binds to ER α , which enters the nucleus, dimerizes, and binds to the ERE, resulting in differential gene expression of a wide array of genes in a region-specific manner. Dimerized ER α can also bind to other transcription factors and sex hormone receptors to lead to additional transcriptional regulation, including increases in chromatin accessibility. These changes in gene expression result in changes in dendritic morphology and synaptic transmission, as well as intrinsic increases in cell excitability, which can lead to long-term potentiation and strengthening of circuits. (b) However, estrogen can also result in short-term nongenomic changes by its binding to cytosolic ER α , leading to a protein kinase cascade and activation of the ERK/MAPK and PI3K/AKT pathways, as well as increases in intracellular calcium release, which can directly lead to synaptic changes and excitability increases. These pathways can also indirectly result in the transcription of relevant genes to exert longer-lasting effects. Abbreviations: *Brinp2*, BMP/retinoic acid inducible neural specific 2; E2, 17 β -estradiol; ERE, estrogen-responsive element; ERK/MAPK, extracellular signal-regulated kinase 1 and 2/mitogen-activated protein kinase; ER α , estrogen receptor 1; *Irs2*, insulin receptor substrate 2; PI3K/AKT, phosphatidylinositol 3-kinase; *Rcn1*, reticulocalbin 1; TF, transcription factor; *Unc5b*, unc-5 netrin receptor B.

Bueno & Pfaff 1976; Gould et al. 1990; Kelly et al. 1976, 1992; Laredo et al. 2014; McEwen 2002; McEwen et al. 2012) (Figure 3b). Estrogen binds to ER α in the cytoplasm, activating a protein kinase cascade that increases intracellular cAMP (Beyer & Karolczak 2000, Vasudevan & Pfaff 2008, Zheng et al. 1996). The increased cAMP then triggers synaptic and cellular changes through mechanisms that remain incompletely understood (Beyer & Karolczak 2000, Laredo et al. 2014,

Murphy & Segal 1997). In the dorsal hippocampus, *in vivo* infusion of E2 could increase spine density, which critically depends on the activation of extracellular signal-regulated kinase 1/2 (ERK) and mammalian target of rapamycin (mTOR) (Tuscher et al. 2016). Estrogen can also increase spine density by upregulating brain-derived neurotrophic factor (Singh et al. 1995, Sohrabji et al. 1995) and its receptors, tyrosine kinase receptors A and B (TrKA and TrKB) (Luine & Frankfurt 2013), which promote synaptogenesis (Santos et al. 2010). Slice recording in the VMH showed that bath application of EB could increase cell excitability through regulation of NMDA and histamine receptors, which could represent a potential mechanism for changing VMHvl^{Cckar} cell excitability over the estrous cycle (Kow et al. 2005, Yin et al. 2022). It is likely that estrogen modulates the cell activity in the SBN through both genomic and nongenomic actions, and the exact action may vary from cell to cell.

CONCLUDING REMARKS AND OPEN QUESTIONS

From manipulating sex hormones (gonadectomy and estrogen supplementation) of the whole animal to manipulating estrogen receptors and their expressing cells in specific brain regions and pathways, the critical role of estrogen in orchestrating social behaviors has been firmly established. Hours after birth, the surge of testosterone in males, which is then converted to estrogen, is responsible for the structural differences in social behavior circuits between sexes (McCarthy 2008). During puberty and continuing in adult life, sex hormones are indispensable for keeping the social behavior circuits active and sex-specific. While thousands of genes are differentially expressed between males and females in the limbic system, removing sex steroid hormones nearly eliminates these gene expression differences between sexes (Gegenhuber et al. 2022). In adult females, estrogen, together with progesterone, fine tunes the social behavior circuits during the estrous cycle, pregnancy, lactation, and menopause to ensure the appropriate and timely expression of specific social behaviors for the continuation of the species. In adult males, estrogen (or testosterone, the main source of estrogen) does not vary in an autonomous fashion. However, it surges during or after social behaviors, such as copulation and aggression, and likely plays important roles in reinforcing the behavior circuit to facilitate future behavior expression (Hirschenhauser & Oliveira 2006, Wingfield et al. 1990). Thus, sex hormones, especially estrogen, are the master controllers of nearly all aspects of social behaviors, from their emergence to their maintenance.

Estrogen appears to mainly act through ER α to control social behaviors. Fewer studies have focused on ER β , possibly due to a lack of strong social behavior deficits after *Esr2* KO, although some studies have revealed the potentially complementary roles of ER β and ER α (Naulé et al. 2016, Nomura et al. 2006, Ogawa et al. 1999, Zhou et al. 2023). ER α ultimately modulates social behaviors via *Esr1*-expressing cells, which are proven to be critical mediators for all social behaviors. Thus, if a brain region is involved in multiple social behaviors, for example, VMHvl in females or MPOA in males, ER α likely marks multiple functionally heterogeneous populations. Additional molecular markers likely exist to label subsets of *Esr1*⁺ cells, each involved in one social behavior, for example, VMHvl^{Cckar} cells for female sexual behaviors and VMHvl^{Npy2r} cells for female aggression. These refined markers could provide more precise access to the social behavior circuit of interest.

Despite the tremendous progress made in recent years regarding estrogen control of social behaviors, many questions remain. First, how does ER α activation result in changes in neural circuits? More specifically, what are the molecular events that link estrogen to the physiological, morphological, and connectivity changes? ER α can change the accessibility of thousands of chromatin regions and regulate over 1,000 genes (Gegenhuber et al. 2022, Knoedler et al. 2022). Some of the ER α -targeted genes are transcription factors themselves and could further change

the expression of many other genes. Thus, the possible intracellular effects caused by ER α activation seem endless and are likely cell-specific. Are there some general principles underlying the differential effects of estrogen on *Esr1*-expressing cells? Although we have considered ER α expression as binary (negative or positive), this is far from the reality. ER α expression levels could differ significantly in the same brain region between sexes (e.g., male and female BNST) or between subpopulations in the same region (e.g., female lateral VMHvl versus medial VMHvl). How estrogen modulation varies with ER α expression level is an important question for future investigation.

Second, how do different sex hormone receptors interact to change the properties of a cell? Cells in the limbic system often coexpress multiple sex hormone receptors. For example, PR and androgen receptor are abundantly expressed in most *Esr1*-expressing VMHvl, MPOA, BNST, and MeA cells, although their relative levels vary across clusters of cells (Knoedler et al. 2022). In particular, male estrogen is largely converted from testosterone by aromatase in the brain. How the estrogen level is controlled and how it is coordinated with testosterone action remain unclear.

Lastly, although ER α is a key feature of the SBN, it is conceivable that *Esr1*- cells that receive inputs from *Esr1*-expressing cells could change their output based on estrogen level and participate in social behaviors (Fukui et al. 2022).

In summary, estrogen binds to ER α to induce diverse cell-specific changes in electrophysiological properties, gene expression, morphology, and circuit connectivity. These changes collectively ensure that the social behavior circuit is optimally prepared to respond to the right social target for the ultimate purpose of reproduction. Recent advancements in genetic and circuit tools give us a glimpse of the vast molecular space estrogen can access. We are entering an exciting new era to uncover the molecular milieu via which sex hormones powerfully coordinate diverse social behaviors throughout the lifespan.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We would like to thank Paul Windsor and Paul Cacioppo from the National Institute of Environmental Health Sciences (NIEHS) Office of Communications and Public Liaison for their assistance with the figures. This work was supported by the Intramural Research Program of the NIEHS, National Institutes of Health (NIH) (Z01 ES103403–01) (J.E.L.); NIH grants R01MH101377 (D.L.), R01MH124927 (D.L.), and R01HD116127 (D.L.); and Vulnerable Brain Project (D.L.).

LITERATURE CITED

Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, et al. 2007. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. *J. Reprod. Dev.* 53:367–78

Amano T, Shindo S, Yoshihara C, Tsuneoka Y, Uki H, et al. 2017. Development-dependent behavioral change toward pups and synaptic transmission in the rhomboid nucleus of the bed nucleus of the stria terminalis. *Behav. Brain Res.* 325:131–37

Ammari R, Monaca F, Cao M, Nassar E, Wai P, et al. 2023. Hormone-mediated neural remodeling orchestrates parenting onset during pregnancy. *Science* 382:76–81

Antonio-Cabrera E, Paredes RG. 2012. Effects of chronic estradiol or testosterone treatment upon sexual behavior in sexually sluggish male rats. *Pharmacol. Biochem. Behav.* 101:336–41

Bakker J, Honda S, Harada N, Balthazart J. 2002. The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. *J. Neurosci.* 22:9104–12

Barfield RJ, Busch DE, Wallen K. 1972. Gonadal influence on agonistic behavior in the male domestic rat. *Horm. Behav.* 3:247–59

Barkley MS, Goldman BD. 1977. Testosterone-induced aggression in adult female mice. *Horm. Behav.* 9:76–84

Bayless DW, Yang T, Mason MM, Susanto AAT, Lobdell A, Shah NM. 2019. Limbic neurons shape sex recognition and social behavior in sexually naive males. *Cell* 176:1190–205.e20

Beyer C, Karolczak M. 2000. Estrogenic stimulation of neurite growth in midbrain dopaminergic neurons depends on cAMP/protein kinase A signalling. *J. Neurosci. Res.* 59:107–16

Bowden NJ, Brain PF. 1978. Blockade of testosterone-maintained intermale fighting in albino laboratory mice by an aromatization inhibitor. *Physiol. Behav.* 20:543–46

Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, et al. 2022. Brain-derived estrogen and neural function. *Neurosci. Biobehav. Rev.* 132:793–817

Brock O, Baum MJ, Bakker J. 2011. The development of female sexual behavior requires prepubertal estradiol. *J. Neurosci.* 31:5574–78

Bueno J, Pfaff DW. 1976. Single unit recording in hypothalamus and preoptic area of estrogen-treated and untreated ovariectomized female rats. *Brain Res.* 101:67–78

Campbell AB, McGill TE. 1970. Neonatal hormone treatment and sexual behavior in male mice. *Horm. Behav.* 1:145–50

Chen PB, Hu RK, Wu YE, Pan L, Huang S, et al. 2019. Sexually dimorphic control of parenting behavior by the medial amygdala. *Cell* 176:1206–21.e18

Christie MH, Barfield RJ. 1979. Effects of aromatizable androgens on aggressive behaviour among rats (*Rattus norvegicus*). *J. Endocrinol.* 83:17–26

Clark CR, Nowell NW. 1979. The effect of the antiestrogen CI-628 on androgen-induced aggressive behavior in castrated male mice. *Horm. Behav.* 12:205–10

Davidson JM, Allinson PA. 1969. Effects of estrogen on the sexual behavior of male rats. *Endocrinology* 84:1365–72

Edwards DA. 1969. Early androgen stimulation and aggressive behavior in male and female mice. *Physiol. Behav.* 4:333–38

Edwards DA. 1971. Neonatal administration of androstenedione, testosterone or testosterone propionate: effects on ovulation, sexual receptivity and aggressive behavior in female mice. *Physiol. Behav.* 6:223–28

Edwards DA, Burge KG. 1971. Estrogenic arousal of aggressive behavior and masculine sexual behavior in male and female mice. *Horm. Behav.* 2:239–45

Ehret G, Buckenmaier J. 1994. Estrogen-receptor occurrence in the female mouse brain: effects of maternal experience, ovariectomy, estrogen and anosmia. *J. Physiol. Paris* 88:315–29

Falkner AL, Dollar P, Perona P, Anderson DJ, Lin D. 2014. Decoding ventromedial hypothalamic neural activity during male mouse aggression. *J. Neurosci.* 34:5971–84

Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D. 2016. Hypothalamic control of male aggression-seeking behavior. *Nat. Neurosci.* 19:596–604

Fang Y-Y, Yamaguchi T, Song SC, Tritsch NX, Lin D. 2018. A hypothalamic midbrain pathway essential for driving maternal behaviors. *Neuron* 98:192–207.e10

Fukui K, Sato K, Murakawa S, Minami M, Amano T. 2022. Estrogen signaling modulates behavioral selection toward pups and amygdalohippocampal area in the rhomboid nucleus of the bed nucleus of the stria terminalis circuit. *Neuropharmacology* 204:108879

Gandelman R. 1980. Gonadal hormones and the induction of intraspecific fighting in mice. *Neurosci. Biobehav. Rev.* 4:133–40

Gatewood JD, Wills A, Shetty S, Xu J, Arnold AP, et al. 2006. Sex chromosome complement and gonadal sex influence aggressive and parental behaviors in mice. *J. Neurosci.* 26:2335–42

Gegenhuber B, Wu MV, Bronstein R, Tollkuhn J. 2022. Gene regulation by gonadal hormone receptors underlies brain sex differences. *Nature* 606:153–59

Goodson JL. 2005. The vertebrate social behavior network: evolutionary themes and variations. *Horm. Behav.* 48:11–22

Gould E, Woolley CS, Frankfurt M, McEwen BS. 1990. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. *J. Neurosci.* 10:1286–91

Guo Z, Yin L, Diaz V, Dai B, Osakada T, et al. 2023. Neural dynamics in the limbic system during male social behaviors. *Neuron* 111:3288–306.e4

Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, et al. 2017. Esr1⁺ cells in the ventromedial hypothalamus control female aggression. *Nat. Neurosci.* 20:1580–90

Hasunuma K, Murakawa T, Takenawa S, Mitsui K, Hatsukano T, et al. 2024. Estrogen receptor β in the lateral septum mediates estrogen regulation of social anxiety-like behavior in male mice. *Neuroscience* 537:126–40

Helmy M, Zhang J, Wang H. 2020. Neurobiology and neural circuits of aggression. *Adv. Exp. Med. Biol.* 1284:9–22

Hines M, Allen LS, Gorski RA. 1992. Sex differences in subregions of the medial nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat. *Brain Res.* 579:321–26

Hirschenhauser K, Oliveira RF. 2006. Social modulation of androgens in male vertebrates: meta-analyses of the challenge hypothesis. *Anim. Behav.* 71:265–77

Hong W, Kim DW, Anderson DJ. 2014. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. *Cell* 158:1348–61

Inoue S, Yang R, Tantry A, Davis CH, Yang T, et al. 2019. Periodic remodeling in a neural circuit governs timing of female sexual behavior. *Cell* 179:1393–408.e16

Johnson CS, Hong W, Micevych PE. 2021. Posterior medial amygdala regulation of female social behavior: GABA versus glutamate projections. *J. Neurosci.* 41:8790–800

Juntti SA, Tollkuhn J, Wu MV, Fraser EJ, Soderborg T, et al. 2010. The androgen receptor governs the execution, but not programming, of male sexual and territorial behaviors. *Neuron* 66:260–72

Karigo T, Kennedy A, Yang B, Liu M, Tai D, et al. 2021. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. *Nature* 589:258–63

Kelly MJ, Loose MD, Ronnekleiv OK. 1992. Estrogen suppresses μ -opioid- and GABA β -mediated hyperpolarization of hypothalamic arcuate neurons. *J. Neurosci.* 12:2745–50

Kelly MJ, Moss RL, Dudley CA. 1976. Differential sensitivity of preoptic-septal neurons to microelectrophoresed estrogen during the estrous cycle. *Brain Res.* 114:152–57

Kercmar J, Snoj T, Tobet SA, Majidic G. 2014. Gonadectomy prior to puberty decreases normal parental behavior in adult mice. *Horm. Behav.* 66:667–73

Kim D-W, Yao Z, Graybuck LT, Kim TK, Nguyen TN, et al. 2019. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. *Cell* 179:713–28.e17

Knoedler JR, Inoue S, Bayless DW, Yang T, Tantry A, et al. 2022. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. *Cell* 185:654–71.e22

Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B, et al. 2018. Functional circuit architecture underlying parental behaviour. *Nature* 556:326–31

Kow L-M, Easton A, Pfaff D. 2005. Acute estrogen potentiates excitatory responses of neurons in rat hypothalamic ventromedial nucleus. *Brain Res.* 1043:124–31

Kudwa AE, Rissman EF. 2003. Double oestrogen receptor α and β knockout mice reveal differences in neural oestrogen-mediated progestin receptor induction and female sexual behaviour. *J. Neuroendocrinol.* 15:978–83

Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, et al. 2011. The dynamic structure of the estrogen receptor. *J. Amino Acids* 2011:812540

Laredo SA, Villalon Landeros R, Trainor BC. 2014. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms. *Front. Neuroendocrinol.* 35:447–58

Lee H, Kim DW, Remedios R, Anthony TE, Chang A, et al. 2014. Scalable control of mounting and attack by Esr1⁺ neurons in the ventromedial hypothalamus. *Nature* 509:627–32

Lin D, Boyle MP, Dollar P, Lee H, Lein ES, et al. 2011. Functional identification of an aggression locus in the mouse hypothalamus. *Nature* 470:221–26

Lischinsky JE, Lin D. 2020. Neural mechanisms of aggression across species. *Nat. Neurosci.* 23:1317–28

Lischinsky JE, Sokolowski K, Li P, Esumi S, Kamal Y, et al. 2017. Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues. *eLife* 6:e21012

Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, et al. 2023. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. *Nat. Neurosci.* 26(12):2131–46

Liu M, Kim DW, Zeng H, Anderson DJ. 2022. Make war not love: the neural substrate underlying a state-dependent switch in female social behavior. *Neuron* 110:841–56.e6

Liu M, Nair A, Coria N, Linderman SW, Anderson DJ. 2024. Encoding of female mating dynamics by a hypothalamic line attractor. *Nature* 634:901–9

Luine V, Frankfurt M. 2013. Interactions between estradiol, BDNF and dendritic spines in promoting memory. *Neuroscience* 239:34–45

Luttge WG. 1972. Activation and inhibition of isolation induced inter-male fighting behavior in castrate male CD-1 mice treated with steroid hormones. *Horm. Behav.* 3:71–81

Luttge WG. 1979. Anti-estrogen inhibition of testosterone-stimulated aggression in mice. *Experientia* 35:273–74

MacLusky NJ, Clark AS, Naftolin F, Goldman-Rakic PS. 1987. Estrogen formation in the mammalian brain: possible role of aromatase in sexual differentiation of the hippocampus and neocortex. *Steroids* 50:459–74

MacLusky NJ, Philip A, Hurlburt C, Naftolin F. 1985. Estrogen formation in the developing rat brain: sex differences in aromatase activity during early post-natal life. *Psychoneuroendocrinology* 10:355–61

Martínez-Sanchis S, Arnedo MT, Salvador A, Moya-Albiol L, González-Bono E. 2003. Effects of chronic administration with high doses of testosterone propionate on behavioral and physiological parameters in mice with differing basal aggressiveness. *Aggress. Behav.* 29:173–89

Martini M, Pradotto M, Panzica G. 2011. Synergic effects of estradiol and progesterone on regulation of the hypothalamic neuronal nitric oxide synthase expression in ovariectomized mice. *Brain Res.* 1404:1–9

Matsumoto T, Honda S, Harada N. 2003. Alteration in sex-specific behaviors in male mice lacking the aromatase gene. *Neuroendocrinology* 77:416–24

McCarthy EA, Maqsudlu A, Bass M, Georghiou S, Cherry JA, Baum MJ. 2017. DREADD-induced silencing of the medial amygdala reduces the preference for male pheromones and the expression of lordosis in estrous female mice. *Eur. J. Neurosci.* 46:2035–46

McCarthy MM. 2008. Estradiol and the developing brain. *Physiol. Rev.* 88:91–134

McEwen B. 2002. Estrogen actions throughout the brain. *Recent Prog. Horm. Res.* 57:357–84

McEwen BS, Akama KT, Spencer-Segal JL, Milner TA, Waters EM. 2012. Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms. *Behav. Neurosci.* 126:4–16

Mei L, Yan R, Yin L, Sullivan RM, Lin D. 2023. Antagonistic circuits mediating infanticide and maternal care in female mice. *Nature* 618:1006–16

Miller SM, Marcotulli D, Shen A, Zweifel LS. 2019. Divergent medial amygdala projections regulate approach-avoidance conflict behavior. *Nat. Neurosci.* 22:565–75

Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, et al. 2003. Immunolocalization of estrogen receptor β in the mouse brain: comparison with estrogen receptor α . *Endocrinology* 144:2055–67

Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, et al. 2018. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. *Science* 362:eaau5324

Morishita M, Higo S, Iwata K, Ishii H. 2023. Sex and interspecies differences in ESR2-expressing cell distributions in mouse and rat brains. *Biol. Sex Differ.* 14:89

Murphy DD, Segal M. 1997. Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. *PNAS* 94:1482–87

Musatov S, Chen W, Pfaff DW, Kaplitt MG, Ogawa S. 2006. RNAi-mediated silencing of estrogen receptor α in the ventromedial nucleus of hypothalamus abolishes female sexual behaviors. *PNAS* 103:10456–60

Naftolin F, Ryan KJ, Petro Z. 1972. Aromatization of androstenedione by the anterior hypothalamus of adult male and female rats. *Endocrinology* 90:295–98

Nair A, Karigo T, Yang B, Ganguli S, Schnitzer MJ, et al. 2023. An approximate line attractor in the hypothalamus encodes an aggressive state. *Cell* 186:178–93.e15

Naulé L, Marie-Luce C, Parmentier C, Martini M, Albac C, et al. 2016. Revisiting the neural role of estrogen receptor beta in male sexual behavior by conditional mutagenesis. *Horm. Behav.* 80:1–9

Newman SW. 1999. The medial extended amygdala in male reproductive behavior: a node in the mammalian social behavior network. *Ann. N. Y. Acad. Sci.* 877:242–57

Nomura M, Andersson S, Korach KS, Gustafsson JA, Pfaff DW, Ogawa S. 2006. Estrogen receptor- β gene disruption potentiates estrogen-inducible aggression but not sexual behaviour in male mice. *Eur. J. Neurosci.* 23:1860–68

Nordman JC, Ma X, Gu Q, Poteagal M, Li H, et al. 2020. Potentiation of divergent medial amygdala pathways drives experience-dependent aggression escalation. *J. Neurosci.* 40:4858–80

Ogawa S, Chan J, Chester AE, Gustafsson JA, Korach KS, Pfaff DW. 1999. Survival of reproductive behaviors in estrogen receptor β gene-deficient (β ERKO) male and female mice. *PNAS* 96:12887–92

Ogawa S, Eng V, Taylor J, Lubahn DB, Korach KS, Pfaff DW. 1998a. Roles of estrogen receptor- α gene expression in reproduction-related behaviors in female mice. *Endocrinology* 139:5070–81

Ogawa S, Lubahn DB, Korach KS, Pfaff DW. 1997. Behavioral effects of estrogen receptor gene disruption in male mice. *PNAS* 94:1476–81

Ogawa S, Taylor JA, Lubahn DB, Korach KS, Pfaff DW. 1996. Reversal of sex roles in genetic female mice by disruption of estrogen receptor gene. *Neuroendocrinology* 64:467–70

Ogawa S, Washburn TF, Taylor J, Lubahn DB, Korach KS, Pfaff DW. 1998b. Modifications of testosterone-dependent behaviors by estrogen receptor- α gene disruption in male mice. *Endocrinology* 139:5058–69

Okabe S, Nagasawa M, Kihara T, Kato M, Harada T, et al. 2010. The effects of social experience and gonadal hormones on retrieving behavior of mice and their responses to pup ultrasonic vocalizations. *Zoolog. Sci.* 27:790–95

Padilla SL, Qiu J, Soden ME, Sanz E, Nestor CC, et al. 2016. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. *Nat. Neurosci.* 19:734–41

Perez SE, Chen EY, Mufson EJ. 2003. Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. *Dev. Brain Res.* 145:117–39

Reddy VV, Naftolin F, Ryan KJ. 1974. Conversion of androstenedione to estrone by neural tissues from fetal and neonatal rats. *Endocrinology* 94:117–21

Remedios R, Kennedy A, Zelikowsky M, Grewe BF, Schnitzer MJ, Anderson DJ. 2017. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. *Nature* 550:388–92

Ribeiro AC, Musatov S, Shteyler A, Simanduyev S, Arrieta-Cruz I, et al. 2012. siRNA silencing of estrogen receptor- α expression specifically in medial preoptic area neurons abolishes maternal care in female mice. *PNAS* 109:16324–29

Ring JR. 1944. The estrogen-progesterone induction of sexual receptivity in the spayed female mouse. *Endocrinology* 34:269–75

Ryan KJ, Naftolin F, Reddy V, Flores F, Petro Z. 1972. Estrogen formation in the brain. *Am. J. Obstet. Gynecol.* 114:454–60

Sano K, Nakata M, Musatov S, Morishita M, Sakamoto T, et al. 2016. Pubertal activation of estrogen receptor α in the medial amygdala is essential for the full expression of male social behavior in mice. *PNAS* 113:7632–37

Sano K, Tsuda MC, Musatov S, Sakamoto T, Ogawa S. 2013. Differential effects of site-specific knockdown of estrogen receptor α in the medial amygdala, medial pre-optic area, and ventromedial nucleus of the hypothalamus on sexual and aggressive behavior of male mice. *Eur. J. Neurosci.* 37:1308–19

Santos AR, Comprido D, Duarte CB. 2010. Regulation of local translation at the synapse by BDNF. *Prog. Neurobiol.* 92:505–16

Sato K, Hamasaki Y, Fukui K, Ito K, Miyamichi K, et al. 2020. Amygdalohippocampal area neurons that project to the preoptic area mediate infant-directed attack in male mice. *J. Neurosci.* 40:3981–94

Scott R, Aubry A, Cuttoli RD, Rachel FF, Lyonna P, et al. 2023. A critical role for cortical amygdala circuitry in shaping social encounters. *Res. Sq.* <https://doi.org/10.21203/rs.3.rs-3015820/v1>

Siegel HI, Doerr HK, Rosenblatt JS. 1978. Further studies on estrogen-induced maternal behavior in hysterectomized-ovariectomized virgin rats. *Physiol. Behav.* 21:99–103

Siegel HI, Rosenblatt JS. 1975a. Estrogen-induced maternal behavior in hysterectomized-ovariectomized virgin rats. *Physiol. Behav.* 14:465–71

Siegel HI, Rosenblatt JS. 1975b. Latency and duration of estrogen induction of maternal behavior in hysterectomized-ovariectomized virgin rats: effects of pup stimulation. *Physiol. Behav.* 14:473–76

Silva AL, Fry WHD, Sweeney C, Trainor BC. 2010. Effects of photoperiod and experience on aggressive behavior in female California mice. *Behav. Brain Res.* 208:528–34

Simon NG, Whalen RE. 1986. Hormonal-regulation of aggression: evidence for a relationship among genotype, receptor-binding, and behavioral sensitivity to androgen and estrogen. *Aggress. Behav.* 12:255–66

Singh M, Meyer EM, Simpkins JW. 1995. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. *Endocrinology* 136:2320–24

Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. 2005. Regulation of *Kiss1* gene expression in the brain of the female mouse. *Endocrinology* 146:3686–92

Södersten P. 1973. Estrogen-activated sexual behavior in male rats. *Horm. Behav.* 4:247–56

Sohrabji F, Miranda R, Toran-Allerand CD. 1995. Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. *PNAS* 92:11110–14

Spiteri T, Musatov S, Ogawa S, Ribeiro A, Pfaff DW, Ågmo A. 2010. The role of the estrogen receptor α in the medial amygdala and ventromedial nucleus of the hypothalamus in social recognition, anxiety and aggression. *Behav. Brain Res.* 210:211–20

Stagkourakis S, Spigolon G, Liu G, Anderson DJ. 2020. Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. *PNAS* 117:25789–99

Thompson ML, Edwards DA. 1971. Experiential and strain determinants of the estrogen-progesterone induction of sexual receptivity in spayed female mice. *Horm. Behav.* 2:299–305

Trainor BC, Finy MS, Nelson RJ. 2008. Rapid effects of estradiol on male aggression depend on photoperiod in reproductively non-responsive mice. *Horm. Behav.* 53:192–99

Trainor BC, Lin S, Finy MS, Rowland MR, Nelson RJ. 2007. Photoperiod reverses the effects of estrogens on male aggression via genomic and nongenomic pathways. *PNAS* 104:9840–45

Trouillet A-C, Ducrocq S, Naulé L, Capela D, Parmentier C, et al. 2022. Deletion of neural estrogen receptor α induces sex differential effects on reproductive behavior in mice. *Commun. Biol.* 5:383

Tsuneoka Y, Tokita K, Yoshihara C, Amano T, Esposito G, et al. 2015. Distinct preoptic-BST nuclei dissociate paternal and infanticidal behavior in mice. *EMBO J.* 34:2652–70

Tuscher JJ, Luine V, Frankfurt M, Frick KM. 2016. Estradiol-mediated spine changes in the dorsal hippocampus and medial prefrontal cortex of ovariectomized female mice depend on ERK and mTOR activation in the dorsal hippocampus. *J. Neurosci.* 36:1483–89

Uhrich J. 1938. The social hierarchy in albino mice. *J. Comp. Psychol.* 25:373–413

Unger EK, Burke KJ Jr, Yang CF, Bender KJ, Fuller PM, Shah NM. 2015. Medial amygdalar aromatase neurons regulate aggression in both sexes. *Cell Rep.* 10:453–62

Vasudevan N, Pfaff DW. 2008. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. *Front. Neuroendocrinol.* 29:238–57

Wei D, Osakada T, Guo Z, Yamaguchi T, Varshneya A, et al. 2023. A hypothalamic pathway that suppresses aggression toward superior opponents. *Nat. Neurosci.* 26:774–87

Wei D, Talwar V, Lin D. 2021. Neural circuits of social behaviors: innate yet flexible. *Neuron* 109:1600–20

Wei YC, Wang SR, Jiao ZL, Zhang W, Lin JK, et al. 2018. Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. *Nat. Commun.* 9:279

Wingfield JC, Hegner RE, Dufty AM Jr, Ball GF. 1990. The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. *Am. Nat.* 136:829–46

Wu MV, Manoli DS, Fraser EJ, Coats JK, Tollkuhn J, et al. 2009. Estrogen masculinizes neural pathways and sex-specific behaviors. *Cell* 139:61–72

Wu MV, Tollkuhn J. 2017. Estrogen receptor α is required in GABAergic, but not glutamatergic, neurons to masculinize behavior. *Horm. Behav.* 95:3–12

Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG. 2014. Galanin neurons in the medial preoptic area govern parental behaviour. *Nature* 509:325–30

Xu X, Coats JK, Yang CF, Wang A, Ahmed OM, et al. 2012. Modular genetic control of sexually dimorphic behaviors. *Cell* 148:596–607

Yamaguchi T, Wei D, Song SC, Lim B, Tritsch NX, Lin D. 2020. Posterior amygdala regulates sexual and aggressive behaviors in male mice. *Nat. Neurosci.* 23:1111–24

Yan R, Wei D, Varshneya A, Shan L, Dai B, et al. 2024. The multi-stage plasticity in the aggression circuit underlying the winner effect. *Cell* 187:6785–803.e18

Yang B, Karigo T, Anderson DJ. 2022. Transformations of neural representations in a social behaviour network. *Nature* 608:741–49

Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, et al. 2013. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. *Cell* 153:896–909

Yang T, Bayless DW, Wei Y, Landayan D, Marcelo IM, et al. 2023. Hypothalamic neurons that mirror aggression. *Cell* 186:1195–211.e19

Yang T, Yang CF, Chizari MD, Maheswaranathan N, Burke KJ Jr., et al. 2017. Social control of hypothalamus-mediated male aggression. *Neuron* 95:955–70.e4

Yin L, Hashikawa K, Hashikawa Y, Osakada T, Lischinsky JE, et al. 2022. VMHvll^{Cckar} cells dynamically control female sexual behaviors over the reproductive cycle. *Neuron* 110:3000–17.e8

Yin L, Lin D. 2023. Neural control of female sexual behaviors. *Horm. Behav.* 151:105339

Yoshihara C, Tokita K, Maruyama T, Kaneko M, Tsuneoka Y, et al. 2021. Calcitonin receptor signaling in the medial preoptic area enables risk-taking maternal care. *Cell Rep.* 35:109204

Yu Z-X, Li X-Y, Xu X-H. 2020. Neural circuit mechanisms that underlie parental care. *Adv. Exp. Med. Biol.* 1284:49–62

Zheng J, Ali A, Ramirez VD. 1996. Steroids conjugated to bovine serum albumin as tools to demonstrate specific steroid neuronal membrane binding sites. *J. Psychiatry Neurosci.* 21:187–97

Zhou X, Li A, Mi X, Li Y, Ding Z, et al. 2023. Hyperexcited limbic neurons represent sexual satiety and reduce mating motivation. *Science* 379:820–25