
430  |  Nature  |  Vol 639  |  13 March 2025

Article

Experience-dependent dopamine 
modulation of male aggression

Bing Dai1 ✉, Bingqin Zheng1, Xiuzhi Dai1, Xiaoyang Cui1, Luping Yin1, Jing Cai1, Yizhou Zhuo2,3,4, 
Nicolas X. Tritsch1,5,9, Larry S. Zweifel6,7, Yulong Li2,3,4 & Dayu Lin1,5,8 ✉

Numerous studies support the role of dopamine in modulating aggression1,2,  
but the exact neural mechanisms remain elusive. Here we show that dopaminergic 
cells in the ventral tegmental area (VTA) can bidirectionally modulate aggression  
in male mice in an experience-dependent manner. Although VTA dopaminergic  
cells strongly influence aggression in novice aggressors, they become ineffective  
in expert aggressors. Furthermore, eliminating dopamine synthesis in the VTA 
prevents the emergence of aggression in naive mice but leaves aggression intact  
in expert aggressors. VTA dopamine modulates aggression through the dorsal  
lateral septum (dLS), a region known for aggression control. Dopamine enables  
the flow of information from the hippocampus to the dLS by weakening local 
inhibition in novice aggressors. In expert aggressors, dLS local inhibition naturally 
weakens, and the ability of dopamine to modulate dLS cells diminishes. Overall, 
these results reveal a sophisticated role of dopamine in the rise of aggression  
in adult male mice.

Aggression is an innate social behaviour that is essential for defend-
ing territory, competing for resources and securing mates. Exten-
sive research has revealed a subcortical core aggression circuit that 
is composed of the medial hypothalamus, extended amygdala and 
periaqueductal gray3. A parallel set of studies suggests that dopa-
mine has a complex role in modulating aggression1,2. First, dopamine 
receptor antagonists represent the most frequent and enduring 
treatment for suppressing aggression in humans4. Typical antipsy-
chotics, which mainly target D2 receptors (D2Rs), have been used for 
decades to control aggression associated with psychotic conditions 
such as schizophrenia, autism and borderline personality disorders5.  
However, their effects are closely linked to sedation, raising the ques-
tion of whether diminished aggression is secondary to the general 
suppression of arousal6. Furthermore, stimulants that increase cen-
tral dopamine levels, such as amphetamine and methamphetamine, 
can heighten aggression, although a meta-analysis found that this 
effect was highly variable depending on dosage and behavioural  
paradigms7.

Pharmacological studies in animals support a similarly complex 
role for dopamine in modulating aggression. Whereas early studies 
generally concluded that stimulants enhance aggression in rodents8,9, 
more recent studies suggest that their effects vary with drug dosage 
and behavioural history10. D2R antagonists strongly reduce aggres-
sion in mice, but often concomitantly affect locomotion11,12. The most 
perplexing finding is that D2R agonists, just like D2R antagonists, 
suppress aggression and reduce locomotion13. Genetic studies pro-
vide more uniform support for the role of dopamine in aggression. 
Mutations in monoamine oxidase A and catechol-O-methyltransferase 

that impair the degradation of monoamines (including dopamine, 
serotonin and noradrenaline) are consistently linked to hyperag-
gressive phenotypes in humans14,15. Similarly, monoamine oxidase A,  
catechol-O-methyltransferase and dopamine transporter (DAT) knock-
out mice all show increased dopamine levels in the central nervous 
system and abnormally high levels of inter-male aggression14,16,17.

Previous circuit studies suggest that VTA dopaminergic cells can 
influence male aggression18,19. One study showed that basal forebrain 
GABAergic (GABA refers to γ-aminobutyric acid) inputs to the lat-
eral habenula (LHb) bidirectionally control attack and the valence 
of aggressive interaction in male mice20. Given the dense projections 
from the LHb to the VTA, the VTA was considered to be a likely down-
stream region to mediate LHb modulation of aggression21. Indeed, 
another study reported that 10-min optogenetic activation of VTA 
dopaminergic cells enhanced attack towards conspecific intruders 
in male mice19. It has been suggested that VTA dopaminergic cells 
influence aggression by inhibiting the lateral septum18. However, para-
doxically, VTA dopaminergic cells project mainly to the dLS22, a site 
that has been proposed to promote aggression through its inhibitory 
projection to the ventral lateral septum (vLS), which, in turn, inhibits 
the ventrolateral part of the ventromedial hypothalamus (VMHvl), a 
key site for aggression generation23–25. Thus, although dopamine has 
been linked to aggression in numerous clinical and preclinical studies, 
its exact action remains unclear.

Here we show that whether VTA dopamine modulates aggression 
depends strongly on fighting experience. We then uncover the neural 
circuit mechanisms that underlie this experience-dependent dopamine 
modulation.
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VTADAT alters aggression only in novices
Optogenetic activation of VTA dopamine cells enhances attack and 
mounting in male mice19. However, the roles of these cells in naturally 
occurring inter-male aggression remain unclear. We thus chemoge-
netically inhibited VTA dopaminergic cells using hM4Di26 (control: 
mCherry) in male DAT-Cre mice (Fig. 1a,b). More than 90% of infected 
cells were in the VTA (Fig. 1c). Pilot experiments suggested inconsistent 
changes in aggression after inhibiting DAT-expressing VTA (VTADAT) 
cells (data not shown). However, careful examination revealed that 
the mouse’s fighting experience might influence the manipulation 
outcome, which agrees with a previous report suggesting that D2R 
antagonists only suppress aggression in novice fighters27. To investigate 
the role of experience-dependent dopamine modulation on aggres-
sion, we tested the effect of VTADAT inhibition in ‘novice’ and ‘expert’ 
aggressors (Fig. 1d,e). The former are defined as mice with fewer than 

three days of attack experience, and the latter are mice with a minimum 
of eight days of continuous winning in the standard resident-intruder 
(RI) tests (Fig. 1d).

For novice aggressors, attack duration significantly decreased, and 
attack latency increased in hM4Di mice after injection of C21 (a hM4Di 
ligand)28 compared with saline injection (Fig. 1f–h). Male and female 
investigation duration, mounting and intromission, latency to mount 
towards a female mouse and general locomotion in an open arena 
did not differ between C21- and saline-injected days (Extended Data 
Fig. 1c–e,i–l). mCherry control mice showed no change in any behav-
iours after C21 injection (Fig. 1f–h and Extended Data Fig. 1c–e,i–l).  
Thus, VTADAT inhibition suppresses aggression but not other behaviours 
in novice aggressors.

After the first round of C21 and saline injections, all mice underwent 
daily RI tests against BALB/c (BC) male intruders for another eight days 
to become expert aggressors, and were tested again (Fig. 1e). Unlike 
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Fig. 1 | VTADAT cells modulate male aggression in naive mice and novice 
aggressors, but not in expert aggressors. a, Experimental design.  
b, Representative histology. Scale bar, 250 μm. c, Percentage of total infected 
cells in the VTA. d, Definition of naive mice, novice aggressors and expert 
aggressors. e, Experimental timeline (top) and 10-min RI test (RIT; bottom).  
i.p., intraperitoneal; Sal, saline; SH, single housing; asterisk denotes 
counterbalanced. f–k, Percentage of mice that attacked (f,i), attack duration 
(g,j), and latency to attack (h,k) after saline or C21 treatment in mCherry, 
hM4Di and hM3Dq novice (f–h) and expert (i–k) aggressors. If no attack occurs, 
the latency is 600 s. l, Experimental design. m, Representative histology. Right 
images are enlarged views of the boxed areas. Scale bars, 250 μm (left); 100 μm 
(right). n, Percentage of TH-positive cells among EGFP-positive VTA cells in 
sgRosa26 and sgTH mice. o, Percentage of infected cells in the VTA in combined 
infected cells in the VTA and SNc. p, Experimental timeline. q, Number of attack 
days in 8-day RI tests in Rosa26 and sgTH naive mice (left) and in expert 

aggressors (right). r–w, Percentage of attacking mice (r,u), attack duration (s,v) 
and latency to attack (t,w) during each daily RI test after ablating Rosa26 or TH 
in naive male mice (r–t) and in expert aggressors (u–w). *P < 0.05, **P < 0.01, 
***P < 0.001. Numbers in parentheses indicate numbers of mice. Circles and 
lines represent data from individual mice. c,q, Mann–Whitney test; f, McNemar’s 
test for hM4Di group; g,h,j,k, repeated-measures two-way ANOVA with 
multiple comparisons and Bonferroni’s or Tukey’s correction; n,o, two-way 
ANOVA with multiple comparisons and Bonferroni’s correction; r,u, Fisher’s 
exact tests with false discovery rate (FDR) correction; s,t,v,w, repeated-measures 
two-way ANOVA with multiple comparisons and Bonferroni’s correction. See 
Supplementary Table 1 for statistical details. Elements (mice) in e were created 
using BioRender (https://biorender.com). In this and all other figures, bars and 
error bars, and solid lines and shades, represent mean ± s.e.m.; all P ≤ 0.05 are 
indicated, if not, P > 0.05; all statistical tests are two-tailed. Brain illustrations 
are adapted from the Allen Brain Reference Atlas (https://atlas.brain-map.org).
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the robust C21-induced decrease in aggression in novice aggressors, 
inhibiting VTADAT cells in expert aggressors did not impair aggressive 
behaviours. All mice attacked the BC intruders, and the attack duration 
and latency were comparable between C21- and saline-injected days 
(Fig. 1i–k). Investigation duration and locomotion also did not differ 
between C21- and saline-injected days (Extended Data Fig. 1f–h). Thus, 
VTADAT cells are crucial for aggressive behaviours in novices but not in 
expert aggressors.

We next asked whether chemogenetic activation of VTADAT cells 
can promote aggression, as optogenetic activation does18,19, and if so, 
whether it depends on experience. We expressed hM3Dq in the VTA 
dopamine cells of DAT-Cre male mice and tested the aggression of 
novices and experts after saline and C21 injections (Fig. 1a,e). Chemo-
genetic activation of VTADAT cells consistently increased attack duration 
in novice aggressors without affecting attack latency and investigation 
duration (Fig. 1f–h and Extended Data Fig. 1c,d). Male sexual behav-
iours were unchanged after C21 injection (Extended Data Fig. 1i–l). By 
contrast, in expert aggressors, C21 injection did not alter attack dura-
tion or latency, further supporting an experience-dependent role for 
VTADAT cells in aggression (Fig. 1i–k). Notably, activation of VTADAT cells 
enhanced locomotion in both novice and expert aggressors, suggest-
ing that C21 remains effective in changing VTADAT cell activity in expert 
aggressors and that the overall levels of aggression are dissociable from 
movement (Extended Data Fig. 1e,h).

The lack of change in aggression after manipulation of VTADAT in 
expert aggressors could not be explained by the ceiling or floor effects 
of aggression, because novice and expert aggressors attacked for a 
comparable amount of time, and the same manipulation readily altered 
attack duration in novice aggressors (Fig. 1g,j). The similar attack dura-
tion of novice and expert aggressors towards BC intruders is unsurpris-
ing. We recently found that although the level of aggression increases as 
mice gain more winning experience (reflected by their increased readi-
ness to attack a stronger opponent), the attack duration towards a weak 
opponent—for example, a non-aggressive BC male intruder—plateaus 
after one to two days of winning29. Nevertheless, to address whether 
aggressive behaviours were immune to perturbations in expert aggres-
sors, we chemogenetically activated the Esr1-expressing population in 
the ventrolateral part of the ventromedial hypothalamus (VMHvlEsr1), 
a key population for driving aggression30,31 (Extended Data Fig. 2a–c). 
In contrast to the activation of VTADAT cells, activating VMHvlEsr1 cells 
increased attack duration and shortened attack latency in both novice 
and expert aggressors (Extended Data Fig. 2d–f). Investigation dura-
tion also trended downwards after C21 injection, probably owing to 
increased aggression (Extended Data Fig. 2g). VMHvlEsr1 activation also 
induced attacks towards female intruders, as previously reported30,32, 
in both novice and expert aggressors (Extended Data Fig. 2h–k). By 
contrast, we never observed female-directed attacks after VTADAT activa-
tion (Extended Data Fig. 1m). Overall, our findings highlight the unique 
experience-dependent and target-specific modulatory effect of VTADAT 
cells on aggression.

Aggression is sexually dimorphic in mice33. Virgin females gener-
ally show minimum aggression towards intruders. However, female 
aggression markedly increases during lactation, to protect the young—a 
phenomenon known as maternal aggression33. We chemogenetically 
inhibited VTADAT cells in lactating females and found no significant 
change in any behavioural measures, including the probability of attack, 
attack duration and latency, investigation duration and locomotion 
(Extended Data Fig. 3a–h). Furthermore, chemogenetic activation of 
VTADAT cells did not change attack or social investigation in either virgin 
or lactating females (Extended Data Fig. 3i–m). However, VTADAT cell 
activation increased locomotion in females, as it did in males, suggest-
ing that the manipulation was effective (Extended Data Fig. 3n). Thus, 
VTADAT cells are not essential for modulating female aggression, regard-
less of the reproductive state. We therefore focused our subsequent 
experiments on inter-male aggression.

Emergence of aggression requires VTA dopamine
We next asked whether dopamine is the key neurotransmitter in modu-
lating aggression and, if so, whether its role is experience dependent. 
We induced mutagenesis of tyrosine hydroxylase (TH), a rate-limiting 
enzyme for dopamine synthesis, by injecting Cre-dependent CRISPR–
SaCas9 and TH-targeting guide RNA (sgTH) (control: sgRosa26) virus 
into the VTA of DAT-Cre male mice that were either naive or had exten-
sive winning experience34 (Fig. 1l–p). Post hoc TH immunostaining con-
firmed the successful deletion of TH in sgTH-injected mice (Fig. 1m,n). 
Most virus-expressing cells were in the VTA, but some were also found 
in the substantia nigra pars compacta (SNc) (Fig. 1o).

Of the twelve naive sgTH males, none could attack consistently 
across eight days of the RI test; four attacked and achieved victories 
on some days but failed to maintain aggression in later days, whereas 
eight never attacked (Fig. 1q–t). By contrast, nine out of twelve control 
sgRosa26 mice showed escalated aggression over the first three RI tests 
and consistently attacked on subsequent testing days (Fig. 1q–t). The 
investigation duration of sgTH mice did not change over days, whereas 
it decreased gradually in sgRosa26 mice as aggression levels increased 
(Extended Data Fig. 4c). In expert aggressors, TH mutagenesis did not 
negatively affect aggression: both sgTH and sgRosa26 mice attacked the 
intruder reliably across days (Fig. 1q,u–w and Extended Data Fig. 4d). 
With regard to sexual behaviours, we found no difference between sgTH 
and sgRosa26 mice, regardless of their fighting experience. All males 
spent a similar time investigating and mounting females (Extended 
Data Fig. 4e–h).

In the open-field test, the maximum velocities of sgTH and sgRosa21 
mice were comparable, but sgTH mice travelled less (Extended Data 
Fig. 4i–k), possibly owing to the virus spreading to the SNc, which is 
essential for spontaneous movement initiation35 (Fig. 1m,o). Notably, 
the decrease in locomotion was similar for naive and expert aggres-
sors, suggesting that the lack of stable aggression in sgTH naive mice 
is not tied to locomotor defects (Extended Data Fig. 4j). Thus, VTA 
dopamine is crucial for the emergence of aggression in naive mice. 
However, it is dispensable once aggression stabilizes after repeated 
fighting.

Aggression increase requires dopamine input to dLS
VTA dopamine must influence aggression by modulating downstream 
regions. On the basis of VTADAT cell projections22 and the relevance of 
candidate downstream regions to aggression18,23,24,36,37, we focused on 
two structures: the dLS and the nucleus accumbens medial shell (NAcs). 
We first injected 6-hydroxydopamine (6-OHDA) (control: vehicle) bilat-
erally into the dLS or the NAcs to eliminate dopaminergic terminals in 
naive male mice (Fig. 2a). Histology confirmed that 6-OHDA led to a sub-
stantial decrease of dopaminergic terminals (Fig. 2b,c). Naive mice in 
which 6-OHDA was injected into the dLS did not develop stable aggres-
sion over repeated RI tests, in contrast with the escalated aggression 
over days that was seen in control and NAcs-lesioned mice (Fig. 2d and 
Extended Data Fig. 5a–d). In expert aggressors that underwent RI tests 
for eight days before the injection of 6-OHDA or vehicle into the dLS 
(Fig. 2e, top), minimal differences in aggression were observed between 
groups (Fig. 2e and Extended Data Fig. 5e–h). All expert aggressors 
continued to attack reliably over eight testing days (Fig. 2e). Thus, DA 
inputs to the dLS, but not to the NAcs, are essential for the emergence 
but not the maintenance of stable aggression.

dLS dopamine release over repeated fighting
We next recorded dLS dopamine fluctuations using the third-generation 
dopamine sensor, GRABDA3h (ref. 38) (Fig. 2f–n). Fibre photometry 
recording revealed a consistent increase in GRABDA3h in the dLS 
and the  nucleus accumbens core (NAcc) after optogenetic activation 
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of VTADAT cells in naive mice (Extended Data Fig. 6a,b,d,e). Compared 
with the NAcc, VTADAT-activation-induced dopamine release in the 
dLS was smaller, and slower to reach the peak and return to baseline, 
although the latency to respond was similarly short in the dLS and the 

NAcc (Extended Data Fig. 6d–i). Thus, dopamine releases in the dLS 
can be triggered rapidly by the activation of VTADAT cells, although the 
dopamine concentration and uptake rate are likely to be lower in the 
dLS than in the NAcc.
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We next monitored dopamine levels in the dLS as naive mice developed 

into expert aggressors over repeated RI tests (Fig. 2f). When introducing 
the intruder and before aggression emerged, dLS dopamine increased 
moderately for about one minute (Fig. 2h,i), but remained unchanged 
during investigation (Fig. 2i,m). Dopamine increased significantly more 
during the intruder introduction on the first attack day than it did on the 
last non-aggressive day (Fig. 2h–j,m). Dopamine also increased slightly 
during investigation and attack (Fig. 2h,j,n). On the fifth testing day, 
the increase in dopamine during intruder introduction became signifi-
cantly smaller than it was on the first day (Fig. 2h,j,k,n), and it continued 
to decline until the last testing day (Fig. 2h,l,n). On the ninth testing 
day, dopamine did not significantly increase during investigation and 
attack (Fig. 2l,n). These differences in responses probably reflect reduced 
VTADAT cell responses rather than a weakened VTADAT to dLS projection, 
because VTADAT-triggered dLS dopamine release was similar between 
the first and the ninth aggression days (Extended Data Fig. 6c,j–l). Fur-
thermore, dopamine release in mice that encountered a male intruder 
under a cup did not change across days, suggesting that the decline 
in dopamine release depends on fighting experience (Extended Data 
Fig. 7a–g). Finally, the control 405-nm channel showed no changes in 
fluorescence during intruder introduction or investigation, although 
there was a decrease in signal during attack, possibly reflecting move-
ment artefacts (Fig. 2h and Extended Data Fig. 7h–j). The 405-nm signal 
remained constant across testing days (Extended Data Fig. 7i,j).

These observations highlight three key aspects of dLS dopamine 
responses. First, the release of dopamine induced by the intruder is larg-
est on the first day of aggression, supporting its potential role in aggres-
sion emergence. Second, dopamine release decreases after repeated 
fighting experiences, consistent with its diminished role in modulat-
ing aggression in expert aggressors. Third, compared with the NAcc, 
dopamine rises and falls slowly in the dLS, suggesting that it modulates 
the overall aggressive state as opposed to the moment-to-moment 
kinematics of attack bouts.

dLS dopamine promotes aggression in novices
We next asked whether artificially boosting VTA dopamine release at 
the dLS is sufficient to enhance inter-male aggression. Given the slow 
kinetics of dLS dopamine signals, we used both acute (4-mW 470-nm 
light, 30-ms pulses at 10 Hz for 20 s) and tonic stimulation protocols 
to optogenetically activate VTADAT–dLS terminals on separate days 
(Fig. 2o–q and Extended Data Fig. 8a,b). The latter includes a 2-min 
priming period (30 ms, 10 Hz) 10 min before the intruder introduction 
and spaced stimulation (30 ms, 10 Hz, 0.5 s on and 4.5 s off) through-
out the 10-min RI test (Fig. 2q). Acute optogenetic stimulation did not 
change the aggressive behaviours of novice aggressors (Extended 
Data Fig. 8c–f). However, tonic stimulation significantly increased 
the total attack duration in the ChR2-expressing cells, but not in the 
EYFP-expressing cells, of novice aggressors, although attack latency 
and investigation duration did not change (Fig. 2r–u). In expert aggres-
sors, the tonic VTADAT–dLS stimulation did not promote aggression 
(Fig. 2v–y). Furthermore, stimulating VTADAT–dLS lacked positive or 
negative valence, because ChR2 mice spent a similar time in the light 
chamber during the baseline and light-pairing periods in the real-time 
place preference (RTPP) test (Extended Data Fig. 8g,h). The VTADAT–dLS 
terminal stimulation did not increase FOS in VTADAT neurons, suggesting 
that the change in behaviour is unlikely to be due to the recruitment 
of other regions caused by the back propagation of action potentials 
(Extended Data Fig. 8i–k). In contrast to the aggression-promoting 
effect of VTADAT–dLS projection, tonic optogenetic activation of VTADAT– 
NAcs terminals did not change attack duration or latency in novice 
aggressors, even though the stimulation increased the time spent in 
the light-paired chamber in the RTPP test (Extended Data Fig. 8l–s). 
Thus, VTA dopamine terminals at the dLS, but not at the NAcs, facilitate 
aggression in an experience-dependent and slow manner.

Dopamine gates hippocampal flow through the dLS
We next investigated how dopamine affects dLS cell activity to modu-
late aggression. It was previously reported18 that 66% of recorded dLS 
cells showed a slow inhibitory postsynaptic potential (IPSP) when dLS 
dopaminergic terminals were optogenetically activated18. However, we 
found that only 8 out of 45 cells showed slow IPSPs, with an averaged peak 
amplitude of −1.88 ± 0.39 mV (Fig. 3a–f). This discrepancy might be due 
to dopaminergic inputs to the dLS from other regions, such as the dorsal 
raphe, which would be spared in our study but recruited in the previous 
studies using DAT-Cre:Ai32 mice18,39. Indeed, applying 100 µM dopamine 
hyperpolarized 30 out of 35 dLS cells (peak amplitude: −5.28 ± 0.50 mV; 
30 cells) (Extended Data Fig. 9a–d). The effect of dopamine could be 
blocked by the D2R antagonist sulpiride (SUL, 10 µM) or mimicked with a 
D2R agonist sumanirole (SUM, 1 µM), suggesting that D2Rs mainly medi-
ate the effects of dopamine (Extended Data Fig. 9b,d). SUL alone did not 
change the membrane potential significantly (Extended Data Fig. 9b,d).

The small fraction of dLS cells mildly hyperpolarized by VTADAT inputs 
raised doubts about the ability of this mechanism to induce robust 
aggression change (Fig. 2s). Given the prominent role of dopamine 
in synaptic plasticity40, we asked whether VTA dopamine might also 
change synaptic transmission in dLS cells (Fig. 3h). After optogeneti-
cally activating VTADAT terminals for 5 min (1 ms, 30 Hz), the frequency 
of spontaneous inhibitory postsynaptic currents (sIPSCs), but not their 
amplitude, decreased in 18 out of 22 dLS cells for the recording dura-
tion (at least 5 min after the stimulation ended) (Fig. 3i,j). The change 
in sIPSCs could be blocked by pre-applying SUL and mimicked by SUM 
(Fig. 3k–m,q–t). After applying tetrodotoxin (TTX) to block spiking 
activity, SUM remained effective in reducing the frequency of miniature 
IPSCs (mIPSCs) in dLSDrd2 cells, indicating that the release of presynaptic 
inhibitory vesicles decreased (Fig. 3u–w). By contrast, the frequency and 
amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) did 
not change after VTADAT terminal stimulation (Extended Data Fig. 10a–d).

The main long-range input to the dLS comes from the hippocampus 
and is excitatory, whereas dLS cells are overwhelmingly GABAergic 
and form dense local inhibitory connections41. To understand whether 
the dopamine-induced decrease in mIPSCs and sIPSCs reflects weak-
ened local inhibition, we expressed ChR2 sparsely in dLSDrd2 cells, and 
voltage-clamp recorded ChR2-negative dLS cell responses to inputs 
from neighbouring ChR2-positive dLSDrd2 cells (Fig. 3x). The amplitude 
of light-evoked IPSCs (optical IPSCs; oIPSCs) significantly decreased 
and the paired-pulse ratio (PPR) of oIPSCs increased after application 
of SUM, suggesting that D2R activation reduced presynaptic vesicle 
release in dLS cells (Fig. 3y–b′). These results support the hypothesis 
that dLS inhibitory connections are weakened by VTADAT input.

How might decreased local inhibition in the dLS affect aggression? It 
has been reported that dLS cells cannot follow hippocampal stimulation 
of greater than 1 Hz because of a prolonged post-excitation inhibition 
mediated by dLS collaterals42. We thus asked whether dopamine can 
enable the propagation of hippocampal information by dampening 
local inhibition. Specifically, we current-clamp recorded dLS neu-
rons while optogenetically activating CA2 and CA3 (CA2/3) terminals 
before and after VTADAT terminal stimulation (Fig. 4a). At the baseline, 
brief (0.3 ms) activation of CA2/3 terminals reliably evoked an action 
potential followed by a prolonged IPSP in dLS neurons (Fig. 4b). dLS 
cells could follow a 1-Hz hippocampal input but did not generate more 
than one spike when CA2/3 terminals were stimulated at 5 or 10 Hz 
(Fig. 4d,e). After activating VTADAT terminals for 5 min (control: 0 mW 
light), the post-spike IPSC amplitude significantly decreased (Fig. 4c), 
and spiking probability at 5-Hz and 10-Hz CA2/3 terminal stimulation 
significantly increased (Fig. 4d,e). SUM application also significantly 
reduced the post-spike IPSP amplitude (Fig. 4f–h) and increased the 
dLSDrd2 cell spike probability for 5-Hz and 10-Hz CA2/3 inputs to nearly 
100% (Fig. 4i,j). Thus, dopamine can ‘open the gate’ for hippocampal 
inputs to the dLS by reducing local inhibition.
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Lower dLS cell response to dopamine in expert mice
VTADAT–dLS projection did not modulate aggression in expert aggres-
sors even when VTADAT terminals were artificially activated and released 
a similar level of dopamine to that of novice aggressors (Fig. 2v–y 
and Extended Data Fig. 6j–l). We thus hypothesized that dLS cells 
decrease their ability to sense dopamine in expert aggressors. In sup-
port of this, expert aggressors had significantly fewer Drd2-positive 
cells (at least two puncta per cell) in the dLS and fewer puncta per 
positive cell than did novice aggressors (Fig. 3c′–e′). Furthermore, 
dLS cells showed reduced hyperpolarization in expert aggressors 
to dopamine, delivered either through VTADAT terminal stimulation 
or by bath application (Fig. 3c–e and Extended Data Fig. 9b–d). The 
decreased dopamine effect was not due to changes in dLS cell resting 

membrane potentials, which were comparable in experts and novices  
(Fig. 3g and Extended Data Fig. 9e).

Dopamine also reduced its influence on the inhibitory synaptic trans-
mission of dLS cells in expert aggressors. VTADAT terminal stimulation 
did not change the frequency and amplitude of sIPSCs in dLS cells 
in expert aggressors (Fig. 3n–p). Direct application of a D2R agonist 
slightly decreased the frequencies of sIPSCs and mIPSCs in dLSDrd2 
cells, but to a lesser extent than in novices (Fig. 3r–w). Furthermore, 
treatment with SUM induced no change in the amplitude of oIPSCs 
evoked by activating neighbouring dLSDrd2 cells in expert aggressors 
(Fig. 3x–z). The PPR of oIPSCs slightly increased after application of 
SUM in expert aggressors, but to a lesser extent than in novice aggres-
sors (Fig. 3a′,b′). These results collectively provide evidence that dLS 
cells have a weakened response to dopamine in expert aggressors.

j
Baseline

3 s

200 p
A

Post-stim.

0

20

40

60

80

Bas
eli

ne
1 

m
in

3 
m

in
5 

m
in

Post-stim.

Bas
eli

ne
1 

m
in

3 
m

in
5 

m
in

Post-stim.

Bas
eli

ne
1 

m
in

3 
m

in
5 

m
in

Post-stim.

Bas
eli

ne
1 

m
in

3 
m

in
5 

m
in

Post-stim.

Bas
eli

ne
1 

m
in

3 
m

in
5 

m
in

Post-stim.

Bas
eli

ne
1 

m
in

3 
m

in
5 

m
in

Post-stim.

sI
P

S
C

 a
m

p
. (

p
A

)

0

20

40

60

80

sI
P

S
C

 fr
eq

ue
nc

y 
(H

z)

0.007

0.005
<0.001

0

20

40

60

80

sI
P

S
C

 a
m

p
. (

p
A

)

0

20

40

60

80

sI
P

S
C

 fr
eq

ue
nc

y 
(H

z)

3 s

Baseline

200 p
A

Post-stim.

SUL 10 μMh i k l(22)

14

+0 mV +0 mV

Virus
3 or 6 weeks

SH

2 or 5
weeks

SH Agg. trainingAgg. training
8-day RITs

Novice

Expert

Virus dLS
WT

VTA
DAT::ChRmine

AAV-nEF-DIO-ChRmine-
oScarlet

DAT-cre maleDAT-cre male

a b
ChRmine dLS

SUL 10 μM SUL 10 μM

m

3 s

200 p
A

+0 mV

Baseline

Post-stim.

n p

0

20

40

60

80

sI
P

S
C

 a
m

p
. (

p
A

)

0

20

40

60

80

sI
P

S
C

 fr
eq

ue
nc

y 
(H

z)

o

22

q r

S
U

M
B

as
el

in
e

2 s

200 p
A

ExpertNovice

2 s

30 p
AS

U
M

B
as

el
in

e

ExpertNovice
s t u v

0

40

80
<0.001

sI
P

S
C

 fr
eq

ue
nc

y 
(H

z)

20

60 0.02

0.004

Novice
(22)

Expert
(23)

w

m
IP

S
C

 a
m

p
. (

p
A

)

0

20

40

30

10

Novice
(22)

Expert
(21)

0

5

10

15

m
IP

S
C

 fr
eq

ue
nc

y 
(H

z)

<0.001

0.05

0.02

Novice
(22)

Expert
(21)

0

20

40

60

80
sI

P
S

C
 a

m
p

. (
p

A
)

Novice
(22)

Expert
(23)

Baseline
SUM

Baseline
SUM

+0 mV +0 mV

dLS
Drd2::EYFP

AAV-EF1a-DIO-EYFP

Drd2-cre
male

Drd2-cre
male

DAPI EYFP

dLS

TTX 1 μM

D
rd

2+
 c

el
ls

SH SH
2 weeks

Agg. trainingAgg. training
8-day RITs

Novice ExpertWT MaleWT Male

d e

dLS dLS

0

200

400

600

800 0.001

0

5

10

15

20 <0.001

P
un

ct
a 

p
er

 c
el

l

Nov
ice

(15
0)

Exp
er

t

(15
0)

Nov
ice

 (3
)

Exp
er

t (
3)

0

1

Novice
(15)

Expert
(14)

2

3

oI
P

S
C

 a
m

p
. (

nA
)

<0.001

a cx

100 ms

400 pA

N
ov

ic
e

E
xp

er
t

0.3 ms 470 nm

b

100 msNormalized

0.3 ms 470 nm

200 ms Interval 

<0.001

0.05

Baseline
SUM

P
P

R

0

0.5

1.0

1.5

Novice
(15)

Expert
(14)+0 mV

+0 mV

AAV-EF1a-DIO-hChR2(H134R)-EYFP

dLS
WT

dLS
Drd2::ChR2

DAPI ChR2

dLS

Drd2-cre
male

Drd2-cre
male

N
ov

ic
e

E
xp

er
t

3 weeks

Drd2 mRNA

y z

5 min 589 nm 
30 Hz 1 ms 

Stim.

(22) (12) (12) (24) (24)

c

Slow oIPSP8 2 34 1 oEPSP
No resp.Fast oIPSP   

Expert

4 37Expert

Novice
d

–2

0

2

4

–4

–6S
lo

w
 o

IP
S

P
 a

m
p

. (
m

V
)

<0.001

Novice Expert

(45) (41)

1 s

1 mVACSF
SUL 10 μM

200 ms 589 nm

e
Novice

ACSF SUL

–2

–1

0

1

–3

–4S
lo

w
 o

IP
S

P
 a

m
p

. (
m

V
)

0.03

(6)

f

–60

–40

–20

–80

R
M

P
 (m

V
)

NoviceExpert

0
(45) (41)

g

Baseline
SUM

Baseline
SUM

Baseline
SUM

Baseline
SUM

Baseline
SUM

Fig. 3 | Dopamine modulation of dLS cell synaptic and cellular activities  
in novice and expert aggressors. a, Experimental timeline. b, Recording 
schematics for c–p and representative histology. Scale bar, 500 μm.  
c, Representative light-evoked slow IPSPs of dLSWT cells. d,e, Distribution  
of dLSWT cell responses (d) and slow IPSP amplitude (e) after VTADAT terminal 
stimulation in novices and experts. No resp., no response. f, Light-induced  
slow IPSP amplitude of responsive dLSWT cells in novices before and after SUL.  
g, Resting membrane potential (RMP) of dLSWT cells in novices and experts.  
h, Representative sIPSC traces of a dLSWT cell in a novice before (top) and after 
(bottom) 5-min light stimulation. i,j, Amplitude (i) and frequency ( j) of sIPSCs 
before and after VTADAT terminal stimulation in novices. k–p, sIPSC of dLSWT 
cells before and after VTADAT terminal stimulation in novices with SUL 
pre-incubation (k–m) and in experts (n–p). Plots follow conventions in  
h–j. q, Recording schematics for r–w and representative histology. Scale bar, 
500 μm. r–t, Representative sIPSC traces (r), sIPSC amplitude (s) and sIPSC 
frequency (t) of dLSDrd2 cells before (top) and after (bottom) SUM in novices  
and experts. u–w, mIPSC results. Plots follow conventions in r–t. x, Recording 

schematics for x–b′ and representative histology. Scale bar, 500 μm.  
y,a′, Representative IPSCs evoked by one light pulse (y) and a pair of light pulses 
(a′) that activate neighbouring dLSDrd2 cells before and after SUM in novices and 
experts. z,b′, oIPSC amplitude (z) and PPR of oIPSCs (b′) before and after SUM. 
c′, Representative Drd2 mRNA staining in the dLS in novice (left) and expert 
(right) aggressors. Top: experimental timeline. Scale bars, 500 μm. d′,e′, Number 
of Drd2-positive dLS cells (d′) and puncta per cell of 150 randomly selected 
Drd2-positive cells (50 cells per mouse) (e′) in novices and experts. Dashed line, 
median; dotted lines, lower and upper quartiles. Each line and circle represents 
one cell, except circles in d′ that represent mice. Numbers in parentheses 
indicate numbers of cells or mice (d′). d, Fisher’s exact tests; e,e′, Mann–Whitney 
test; g,d′, unpaired t-test; f, paired Wilcoxon test; i,j,m,o, Friedman test with 
multiple comparisons and Dunn’s correction; l,p, repeated-measures one-way 
ANOVA with multiple comparisons and Tukey’s correction; s,t,v,w,z,b′, repeated- 
measures two-way ANOVA with multiple comparisons and Bonferroni’s 
correction. See Supplementary Table 1 for statistical details.
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Reduced intra-dLS inhibition in expert mice
Why does dLS dopamine become nonessential for aggression in 
experts? If dopamine opens the gate for hippocampal inputs, we won-
der whether the dLS gate is already open in expert aggressors without 
dopamine. Consistent with this hypothesis, the frequencies of sIPSCs 
and mIPSCs in dLSDrd2 cells were significantly lower in experts than 
in novice aggressors (Fig. 3t,w). Notably, D2R agonist reduced the s/
mIPSC frequency in novices to a level similar to the baseline level of 
expert aggressors (Fig. 3r,t,u,w). In contrast to the IPSCs, the frequen-
cies of sEPSCs and mEPSCs in dLS cells did not differ between nov-
ice and expert aggressors (Extended Data Fig. 10e,f,h,i,k). However, 
the amplitude of sEPSCs, but not mEPSCs, decreased significantly 
in expert aggressors (Extended Data Fig. 10g,j). This decrease might 
reflect reduced spiking-induced EPSCs, because the sEPSC amplitude 
showed a multimodal distribution in novice aggressors, with clusters 
of 1×, 2× and 3× mEPSC amplitude (Extended Data Fig. 10g,j). In expert 
aggressors, the sEPSC amplitudes of nearly all cells were similar to those 
of mEPSCs (Extended Data Fig. 10g,j). Thus, the spontaneous firing of 
dLS upstream excitatory cells might decrease in expert aggressors.

Finally, the amplitude of the slow post-spike IPSP in dLS cells from 
expert aggressors was significantly lower than that in novice aggressors 
(Fig. 4k–m). Crucially, when we stimulated the CA2/3 terminals at 5 Hz 
and 10 Hz, the dLS cells in expert aggressors spiked with nearly 100% 
reliability—markedly different from the single-spike response pattern 

that was observed in novice aggressors (Fig. 4n–o). These results sug-
gest that the dLS local inhibitory network is weakened in expert aggres-
sors, which enables hippocampal information to flow even without the 
assistance of dopamine.

Discussion
Decades of gain- and loss-of-function experiments revealed that the 
lateral septum has a crucial role in modulating aggression24,43–45. Circuit 
studies have provided further details: whereas the vLS suppresses 
aggression through its projection to the medial hypothalamus, the 
dLS enhances aggression by inhibiting the vLS23,24. Here, we found that 
the strong intra-dLS inhibitory network in naive mice prevents dLS 
cells from responding to the excitatory hippocampal inputs, which 
presumably will limit the influence of the hippocampus on downstream 
circuits (Fig. 4p). The dopamine projection from the VTA to the dLS 
dampens local inhibition in naive mice, which enables the dLS cells to 
respond to excitatory inputs with greater fidelity, and ultimately facili-
tates attack initiation (Fig. 4q). When we impaired the dopaminergic 
input from the VTA to the dLS by inhibiting VTADAT cells, blocking VTA 
dopamine synthesis or depleting dLS dopaminergic inputs, aggression 
did not increase in naive male mice, highlighting the crucial role of the 
VTA–dLS dopamine circuit in the development of aggression in adult 
males. Notably, as males become experienced in fighting, the role of dLS 
dopamine in aggression diminishes. In expert aggressors, suppressing 
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Fig. 4 | Dopamine and fighting experience enhance dLS spiking fidelity to 
hippocampal inputs. a, Recording schematics for b–e. Right: representative 
histology and light protocol to release VTA–LS dopamine. Scale bar, 500 μm. 
b,c, Representative recording of CA2/3-input-evoked dLSWT cell spiking (b) and 
average amplitude of post-spike IPSP (c) before and after VTADAT terminal sham 
(0 mW) or light stimulation. d,e, Representative recording (d) and spiking 
probability (e) of dLSWT cells after 1-, 5- and 10-Hz CA2/3 inputs before and after 
VTADAT terminal sham or light stimulation. f, Recording schematics for g–j and 
representative histology. Scale bars, 500 μm. g,h, Representative recording of 
CA2/3-input-evoked dLSDrd2 cell spiking (g) and average amplitude of post-spike 
IPSP (h) before and after ACSF or SUM. i,j, Representative recording trace  
(i) and spiking probability ( j) of dLSDrd2 cells after 1-, 5- and 10-Hz CA2/3  
inputs before and after ACSF or SUM. k, Recording schematics for l–o.  
l,m, Representative recording of CA2/3-input-evoked dLSDrd2 cell spiking  
(l) and average amplitude of the post-spike IPSP (m) in novices and experts.  

n,o, Representative recording (n) and spiking probability (o) of dLSDrd2 cells 
after 1-, 5- and 10-Hz CA2/3 terminal stimulation in novices and experts.  
p–r, dLS cells in naive mice form strong mutual inhibition, blocking excitatory 
hippocampal inputs from reaching downstream areas and preventing attack 
initiation (p). Over male–male interaction, the increased dLS dopamine release 
weakens dLS local inhibition through D2R, allowing hippocampal information 
to pass and facilitate aggression (q). Over repeated fighting, dLS local inhibition 
weakens, enabling hippocampal information to pass without the assistance of 
dopamine (r). As the role of dopamine diminishes, dopamine release during 
male–male interaction and dLS cell responses to dopamine decrease. Each 
circle and line represents one cell. Numbers inside parentheses indicate 
recorded cell numbers. c,e,h,j,o, repeated-measures two-way ANOVA with 
multiple comparisons and Bonferroni’s correction; m, Mann–Whitney test. See 
Supplementary Table 1 for statistical details.
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VTADAT cell activity, blocking VTA dopamine synthesis or ablating dLS 
dopaminergic inputs caused no deficit in aggression. The reduced 
role of dopamine in the dLS in expert aggressors could be explained 
by changes in dLS local inhibition. After repeated winning, inhibitory 
connections among dLS cells weaken, which enables hippocampal 
inputs to recruit dLS circuits reliably without the assistance of dopa-
mine (Fig. 4r). As the need for dopamine diminishes, the liberation of 
dopamine in the dLS during male encounters and the ability of dLS cells 
to sense dopamine also reduce. We should note that our study did not 
directly investigate the circuit downstream of the dLS. Although the dLS 
could exert its effects on aggression through the previously identified 
dLS–vLS–VMHvl circuit23,24, it might also modulate aggression through 
its projections to other aggression-related regions, such as the lateral 
hypothalamus and the anterior hypothalamus46,47 (Fig. 4p–r). Beyond 
the dLS, the medial hypothalamic regions that directly drive attack also 
undergo extensive synaptic and cellular plasticity with repeated fight-
ing experience29,48–50. These changes are likely to help the aggression 
cells overcome inhibition from the vLS or other regions more readily 
and reduce their reliance on dLS cells in attack initiation.

Our study reveals that VTA dopaminergic neurons have an experience- 
dependent and sexually dimorphic role in modulating aggression, by 
facilitating the output of the dLS (Supplementary Note 1). These findings 
suggest that early interventions that target dopamine receptors could 
be used to prevent the escalation of aggression, and highlight the poten-
tial need for sex-specific strategies to manage and treat aggression.
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Article
Methods

Mice
All procedures were approved by the NYULMC Institutional Animal Care 
and Use Committee (IACUC) in compliance with the National Institutes 
of Health (NIH) Guidelines for the Care and Use of Laboratory Animals. 
Mice were housed under a 12-h light–dark cycle (dark cycle; 10:00 to 
22:00 or 18:30 to 06:30), with food and water available ad libitum. Room 
temperature was maintained at 20–22 °C and humidity at 30–70%, with a 
daily average of approximately 45%. Test mice were adult DAT-Cre ( Jack-
son, 006660), Drd2-Cre (MMRRC_032108-UCD), Esr1-2A-Cre ( Jackson, 
017911) and wild-type C57BL6/N (Charles River, 027) mice. They were 
between 8 and 20 weeks old at the time of behaviour testing or recording. 
Intruder mice in the inter-male RI tests were adult BC (older than 8 weeks) 
male mice. During each RI test, the intruder was randomly picked from 
a group of 20–30 mice, housed 4–5 mice per cage. For the male–female 
RI test, adult C57BL/6N or BC (older than 8 weeks) female mice were 
used. For the female aggression test, juvenile C57BL/6N (approximately 
21–28 days old) male mice were used. All intruder mice were originally 
purchased from Charles River and then bred in-house. They were group-
housed until adulthood. Females were considered receptive if an experi-
enced male could mount and intromit the female within three attempts. 
After surgery, all male test mice were single-housed, and female test 
mice were paired with adult male mice until the females became visibly 
pregnant. Mice were randomly assigned to control and test groups. All 
experiments were performed during the dark cycle of the mice.

Viruses
AAV8-hSyn-DIO-hM4Di-mCherry (1.8 × 1013 vg ml−1, Addgene, 44362- 
AAV8), AAV5-hSyn-DIO-hM3Dq-mCherry (2.0 × 1013 vg ml−1, Addgene, 
44361-AAV5), AAV2-hSyn-DIO-hM3D(Gq)-mCherry (2.6 × 1013 vg ml−1, 
Addgene, 44361-AAV2) and AAV8-nEF-Con/Foff-ChRmine-oScarlet (2.3 ×  
1013 vg ml−1, Addgene, 137161-AAV8) were purchased from Addgene.  
AAV5-EF1a-DIO-EYFP (3.5 × 1012 vg ml−1, UNC, AV4310), AAV5-EF1a- 
DIO-hChR2(H134R)-EYFP (4.0 × 1012 vg ml−1, UNC, AV4313), AAV5- 
CaMKIIa-hChR2(H134R)-EYFP (6.2 × 1012 vg ml−1, UNC, AV4316), AAV5- 
EF1a-DIO-mCherry (5.1 × 1012 vg ml−1, UNC, AV4311) and AAV2- 
hSyn-DIO-mCherry (5.6 × 1012 vg ml−1, UNC, AV4753) were purchased 
from University of North Carolina vector core. AAV-hSyn-DA3h (5.85 ×  
1012 vg ml−1, BrainVTA, PT4721) was purchased from BrainVTA. 
AAV1-CMV-FLEX-EGFP-KASH, AAV1-CMV-FLEX-SaCas9-U6-sgTH and 
AAV1-CMV-FLEX-SaCas9-U6-sgRosa26 were provided by L. Zweifel.

Stereotaxic surgery
Mice were anaesthetized with 1–1.5% isoflurane and placed in a stereo-
tactic frame (Kopf Instruments, model 1900). Viruses or chemicals were 
delivered into the brains through a glass capillary using a nanoinjector 
(World Precision Instruments, Nanoliter 2000) at a speed of 20 nl min−1. 
Stereotaxic injection coordinates were based on the Paxinos and Frank-
lin mouse brain atlas51.

For VTADAT chemogenetic manipulation26, 140 nl per side of 
AAV8-hSyn-DIO-hM4Di-mCherry, AAV5-hSyn-DIO-hM3Dq-mCherry or 
AAV2-hSyn-DIO-mCherry (as a control) was injected bilaterally into the 
VTA (Bregma coordinates: AP: −3.10 mm, ML: ±0.5 mm, DV: −4.50 mm) 
of heterozygous DAT-cCe mice. For VMHvl manipulation, we bilaterally 
injected 80 nl per side of AAV2-hSyn-DIO-hM3D(Gq)-mCherry into the 
VMHvl (AP: −1.70 mm, ML: ±0.75 mm, DV: −5.80 mm) of heterozygous 
Esr1-2A-Cre male mice.

For TH mutagenesis34, we mixed AAV1-CMV-FLEX-EGFP-KASH with 
either AAV1-CMV-FLEX-SaCas9-U6-sgTH or AAV1-CMV-FLEX-SaCas9-
U6-sgRosa26 at 1:2 ratio and then bilaterally injected 240 nl per side 
of the mixed viruses into the VTA (AP: −3.10 mm, ML: ±0.5 mm, DV: 
−4.50 mm) of heterozygous DAT-Cre mice.

For dopamine terminal ablation, we administered 25 mg kg−1 desip-
ramine (Thermo Fisher Scientific, 30-675-0) intraperitoneally 30 min 

before 6-OHDA injection to protect noradrenaline terminals and 
then bilaterally injected 60 nl per side of 6-OHDA solution into either 
the NAcs (AP: 0.98 mm, ML: ±0.5 mm, DV: −4.60 mm) or the dLS (AP: 
0.14 mm, ML: ±0.4 mm, DV: −2.60 mm) of wild-type C57BL/6N male 
mice. For the control mice, we injected the vehicle into both the dLS 
and the NAcs. The 6-OHDA solution was prepared right before the 
injection by dissolving 15 mg of 6-OHDA (Sigma-Aldrich, H4381) in 
1 ml 0.2% ascorbic acid.

For dopamine recording38, we injected 100 nl AAV-hSyn-DA3h 
into the dLS unilaterally (AP: 0.14 mm, ML: ±0.4 mm, DV: −2.60 mm) 
and 140 nl per side of AAV8-nEF-Con/Foff-ChRmine-oScarlet into 
the VTA bilaterally (AP: −3.10 mm, ML: ±0.5 mm, DV: −4.50 mm) of 
heterozygous DAT-Cre male mice for RI tests. We then implanted 
two custom-made optic fibre assemblies (Thorlabs, FT400EMT and 
SFLC440) approximately 300 μm above the injection sites in the dLS 
and VTA on the same hemisphere. These fibres were then secured in 
place using dental cement (C&B Metabond, S380). We also injected 
100 nl of AAV-hSyn-DA3h into the NAcc unilaterally (AP: 0.14 mm, 
ML: ±1.20 mm, DV: −4.60 mm) and 140 nl per side of AAV8-nEF-Con/
Foff-ChRmine-oScarlet into the VTA bilaterally (AP: −3.10 mm, ML: 
±0.5 mm, DV: −4.50 mm) of heterozygous DAT-Cre male mice, and then 
implanted the same fibre assemblies above the injection sites. For 
dopamine recording during non-aggressive social interaction tests, 
we injected 100 nl of AAV-hSyn-DA3h into the dLS unilaterally (AP: 
0.14 mm, ML: ±0.4 mm, DV: −2.60 mm) of wild-type male mice and 
then implanted the same fibre assemblies above the injection sites.

For VTADAT–dLS and terminal optogenetic activation52, we injected 
140 nl per side of either AAV5-EF1a-DIO-hChR2(H134R)-EYFP or 
AAV5-EF1a-DIO-EYFP into the VTA bilaterally (AP: −3.10 mm, ML: 
±0.5 mm, DV: −4.50 mm) of heterozygous DAT-Cre male mice. After 
virus injection, a custom-made optic fibre assembly (Thorlabs, 
FT200EMT and CFLC230) was implanted unilaterally approximately 
300 μm above the dLS (AP: 0.14 mm, ML: ±0.4 mm, DV: −2.60 mm) 
and secured using dental cement (C&B Metabond, S380). For VTA-
DAT–NAcs terminal optogenetic activation, we injected 140 nl per side 
of AAV5-EF1a-DIO-hChR2(H134R)-EYFP into the VTA bilaterally (AP: 
−3.10 mm, ML: ±0.5 mm, DV: −4.50 mm) of heterozygous DAT-Cre male 
mice. After virus injection, two custom-made optic fibre assemblies 
(Thorlabs, FT200EMT and CFLC230) were implanted bilaterally above 
the injection sites.

For slice recordings, to stimulate VTADAT terminals, we injected 140 nl 
per side of AAV8-nEF-Con/Foff-ChRmine-oScarlet bilaterally into the 
VTA (AP: −3.10 mm, ML: ±0.5 mm, DV: −4.50 mm) of heterozygous 
DAT-Cre male mice. To label dLSDrd2 cells, we injected 120 nl per side of 
AAV5-EF1a-DIO-EYFP bilaterally into the dLS (AP: 0.14 mm, ML: ±0.4 mm, 
DV: −2.60 mm) of Drd2-Cre male mice. To investigate the dLS local net-
work, we diluted the AAV5-EF1a-DIO-hChR2(H134R)-EYFP to a final titre 
of 1 × 1012 gc ml−1, and injected 60 nl per side of the diluted virus into dLS 
bilaterally (AP: 0.14 mm, ML: ±0.4 mm, DV: −2.60 mm) of Drd2-Cre male 
mice. To examine the dLSDrd2 cell responses to the excitatory inputs from 
CA2/3, we injected 160 nl per side of AAV5-CaMKIIa-hChR2(H134R)-EYFP 
into CA2/3 bilaterally (AP: −1.70 mm, ML: ±2.05 mm, DV: −1.80 mm) 
and 120 nl per side of AAV5-EF1a-DIO-mCherry into the dLS bilaterally 
(AP: 0.14 mm, ML: ±0.4 mm, DV: −2.60 mm) of Drd2-Cre male mice. 
To investigate the effect of VATDAT terminal activation on dLS cell 
responses to the excitatory inputs from CA2/3, we injected 160 nl per 
side of AAV5-CaMKIIa-hChR2(H134R)-EYFP into the CA2/3 bilaterally 
(AP: −1.70 mm, ML: ±2.05 mm, DV: −1.80 mm) and 140 nl per side of 
AAV8-nEF-Con/Foff-ChRmine-oScarlet into the VTA bilaterally (AP: 
−3.10 mm, ML: ±0.5 mm, DV: −4.50 mm) of heterozygous DAT-Cre male 
mice.

Identification of novice mice
On the basis of our previous experience, the male mouse that weighs 
the least in a cage of four or five mice is less likely to become aggressive 



after single housing. Therefore, we measured the weight of all mice 
and excluded the lowest-weight mouse in a cage before surgery. Three 
(for cell body manipulation) or six (for terminal manipulation) weeks 
after surgery, the test mice went through the 10-min RI test for up to 
three days. During each RI test, a non-aggressive group-housed BC 
male intruder was introduced. Once the test mouse initiated attack and 
won the fight, the intruder was removed. After the test mouse won one 
RI test, it was considered a novice aggressor and used for subsequent 
experiments. Mice that did not display any aggression in all three RI tests 
were excluded. Naive mice used in TH mutagenesis and 6-OHDA lesion 
experiments were not subjected to any pre-screening procedures.

Pharmacogenetic manipulation
To chemogenetically manipulate VTADAT and VMHvlEsr1 cell activity in 
male aggressors, we used the RI tests three weeks after surgery to iden-
tify novice aggressors. During this process, the test mice underwent 
a daily 10-min RI test against a non-aggressive group-housed BC male 
intruder for up to three days. Once the test mouse attacked and won 
one RI test, they were considered novice aggressors. We then divided 
the novice aggressors into two groups. One group received i.p. injection 
of saline, and the other group received 1 mg kg−1 C21(Tocris, 5548), a 
specific ligand of hM4Di28,53. Thirty minutes after injections, we assessed 
the aggression level of the test mice by introducing a BC male intruder 
into the test mouse’s home cage for 10 min. After the aggression test, 
we tested the sexual behaviour of the mouse by introducing a receptive 
female into the test mouse’s home cage. The female’s sexual receptivity 
was predetermined by introducing the female into the cage of a sexually 
experienced male. If the female allowed the male to mount and intro-
mit, the female was deemed receptive. After the aggression and sexual 
behaviour tests, for the VTADAT groups, we also examined the locomo-
tion of the test mouse by placing it in a large open arena (45.7 × 45.7 × 
38.1 cm, acrylic) for 10 min. After completing all the tests, the mouse 
was singly housed for three to seven days without disturbance. We then 
repeated the tests after switching the C21 and saline treatments. The 
mice then underwent daily RI tests for another eight days with male 
BC intruders to become expert aggressors. We then i.p. injected C21 
and saline again on separate days and performed aggression tests with 
BC male intruders, sexual behaviour tests with receptive females and 
locomotion tests in the open arena (only for VTADAT groups).

For chemogenetic activation of VTADAT cells in virgin females, three 
weeks after virus injection, we examined the vaginal smears and 
selected females that were in dioestrus. The test females were then i.p. 
injected with either saline or 1 mg kg−1 C21 on separate dioestrus days 
and tested with a male juvenile intruder (approximately 21–28 days old) 
for 10 min 30 min later. Immediately after the RI tests, locomotion was 
evaluated in a large open arena for 10 min. For chemogenetic activation 
or inhibition of VTADAT cells in lactating females, test females were paired 
with male C57 mice until they were visibly pregnant. Two days after pup 
delivery, we identified females showing robust maternal aggression by 
introducing a juvenile male mouse (approximately 21–28 days old) into 
the female’s home cage for 10 min. Aggressive females were then i.p. 
injected with either saline or 1 mg kg−1 C21 on separate days and tested 
with a male juvenile intruder for 10 min 30 min later. Immediately after 
the RI tests, locomotion was evaluated in a large open arena for 10 min.

CRISPR–Cas9-mediated TH mutagenesis
To induce TH mutagenesis of VTADAT cells in naive mice, we injected 
viruses expressing Cre-dependent SaCas9-sgTH or SaCas9-sgRosa26 
into group-housed DAT-Cre male mice. The mice were singly housed  
after surgery. To induce TH mutagenesis in expert mice, we single- 
housed naive DAT-Cre male mice for two weeks, then subjected the 
mice to daily RI tests with BC male intruders until the mice showed 
eight consecutive wins. Mice that did not attack in the first three days 
of RI tests or did not attack consistently across days were excluded. We 
then injected either SaCas9-sgTH or SaCas9-sgRosa26 virus into the 

VTA of these experienced aggressors. Four weeks after virus injection, 
we subjected all test mice to daily 10-min RI tests with group-housed 
BC male intruders for eight consecutive days. After completing all 
RI tests with males, we tested the test mouse’s sexual behaviour by 
introducing a receptive female for 10 min. The mice were then tested 
for locomotion in an open arena for 10 min.

6-OHDA lesion
To examine the role of dopamine signalling in the emergence of aggres-
sion, group-housed C57BL/6N naive male mice were injected with 
6-OHDA into the NAcs, 6-OHDA into the dLS and vehicle into both the 
NAcs and the dLS. In addition, we injected 6-OHDA or vehicle into the 
dLS of expert aggressors. Expert aggressors were generated by sub-
jecting single-housed naive C57BL/6N male mice to daily RI tests with 
BC male intruders. Mice that won eight days in a row were considered 
expert aggressors. All mice were singly housed after 6-OHDA injection. 
Four weeks after 6-OHDA injection, we subjected all mice to daily 10-min 
RI tests with BC male intruders for eight consecutive days.

Optogenetic activation
To understand the effect of optogenetic activation of VTADAT–dLS and 
VTADAT–NAcs terminals, we first identified novice aggressors using RI 
tests six weeks after virus injection. One day after the screening and 
on the first testing day, half of the mice received 2 min, 4 mW, 30 Hz, 
10 ms and 470 nm light stimulation 10 min before intruder introduction 
and 4 mW, 30 Hz, 10 ms and 0.5 s light train every 5 s throughout the 
10-min RI test. The other half of the mice received no light stimulation 
before or during the RI test. Three to seven days after the first tests, we 
repeated the RI tests with the light condition switched for each mouse.

After examining the effect of tonic light stimulation of VTADAT–dLS 
terminals on aggression, we tested the effect of the acute light stimu-
lation on aggression on a separate day. During the test, we delivered 
4 mW, 30 Hz, 10 ms, 20 s and 470 nm light stimulation or sham (0 mW) 
light when the test mouse investigated the intruder. The light and sham 
light were each delivered four times in a randomized order. The attack 
latency was calculated as the time elapsed from the light onset to the 
first attack. If no attack occurred during the 20-s stimulation, the 
latency was considered 20 s. The attack probability was calculated as 
the proportion of trials in which the test mouse attacked.

Then, the test mice underwent daily RI tests with male BC intruders 
for seven consecutive days and became expert aggressors. We then 
tested the effect of tonic light stimulation on aggressive behaviours 
during the 10-min RI tests using the same light protocol as for the novice 
aggressors. The light and no-light conditions were tested on separate 
days, and the testing order was counterbalanced across mice.

The RTPP test was performed on the same day as the RI test with 
acute light stimulation for the VTADAT–dLS group and on a separate day 
for the VTADAT–NAcs group. The RTPP arena contains two equal-sized 
chambers (13 cm × 16 cm × 25 cm each, acrylic). The test mice were first 
habituated in the arena for 10 min. Then, we recorded behaviour for 
10 min without stimulation to establish a baseline. Finally, we manually 
turned on the light (4 mW, 30 Hz, 10 ms) whenever the mice entered a 
predetermined chamber. The mice’s body centre positions were tracked 
using DeepLabCut54.

To evaluate whether the light activation of VTADAT–dLS terminals 
results in any back propagation of action potentials, we performed 
the tonic light activation as described above in a group of naive male 
mice without the presence of a male intruder. Seventy minutes later, 
the mice were perfused with phosphate-buffered saline (PBS) and 4% 
paraformaldehyde (PFA), and their brains were collected for quantify-
ing FOS in the VTA.

Fibre photometry
The GRABDA3h fluorescence signals were recorded using fibre pho-
tometry55,56. In brief, bandpass-filtered 400-Hz-modulated 470-nm 
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LED light (Semrock, FF02-472/30-25) and 317-Hz-modulated 405-nm 
LED light (Semrock, FBH405-10) were combined and delivered to 
the brain through the implanted optic fibre. The emission light was 
passed through the same optic fibre, filtered (Semrock, FF01-535/505), 
detected by a Femtowatt Silicon Photoreceiver (Newport, 2151) and 
recorded using a TDT real-time processor (TDT, RZ5). The envelopes 
of 400-Hz- and 317-Hz-modulated photocurrents were extracted as 
dopamine-dependent and dopamine-independent fluorescence signals 
using a custom TDT program.

The DAT-Cre mice were group-housed before surgery. The 
lowest-weight mouse from each cage was not used. Three weeks after 
surgery, we subjected the mice to daily RI tests with BC male intrud-
ers until the mice attacked for nine consecutive days. Four out of 
nine mice attacked on the first day of the RI test. Five out of nine mice 
showed aggressive behaviours within three days. For mice that took 
multiple non-aggressive interaction days to start to attack, the last 
non-aggressive day was used for analysis. The GRABDA3h response to 
VTADAT soma stimulation was measured on the day before any RI test 
under the naive condition, and one hour after the RI tests on the first 
and ninth aggression days. During the VTADAT stimulation, the mice 
were head-fixed on a running wheel57, and 4-mW 589-nm laser stimu-
lation (30 Hz, 10 ms) was delivered to the VTA through the implanted 
optic fibre. This stimulation lasted for 5 s and was repeated every 60 s 
for a minimum of six cycles. Mice expressing GRABDA3h in the NAcc 
were not tested for aggression. For non-aggressive social interaction 
tests, mice were not tested for aggression but interacted with an adult 
group-housed BC male mouse under a wired cup for 10 min per day 
for nine days.

To analyse the recording data, the MATLAB function ‘msbackadj’ 
with a moving window of 10% of the total recording duration was first 
applied to the raw signal (Fraw) to obtain the instantaneous baseline sig-
nal (Fbaseline) for both 405-nm and 470-nm channels. The instantaneous 
ΔF/F was calculated as (Fraw – Fbaseline)/Fbaseline. PETHs were constructed 
by aligning the ΔF/F to the onset of each behavioural trial, followed by 
averaging across all trials for each mouse and then across mice. For each 
recording session, the responses during the behaviour were calculated 
as the average ΔF/F for all trials of a specific behaviour. To establish the 
baseline, we calculated the mean of ΔF/F 2 min before introducing male 
intruders. For analysing the entry response, we calculated the ΔF/F 
during the first 60 s after intruder introduction. For investigation and 
attack response analysis, we excluded the behaviours that occurred 
within the first 60 s after intruder entry.

To determine parameters related to the light-evoked GRABDA3h 
response, we first constructed PETHs aligned to the 5-s light onset for 
each mouse. For response onset, the second derivative of the PSTH of 
each mouse was calculated, and the time index corresponding to the 
maximum value of the second derivative immediately after the light 
onset was identified as the response onset. For the latency to reach 
half-peak, the maximum value of the PSTH trace after time 0 was used as 
the peak response, and the first time point at which the GRABDA3h signal 
exceeded half of this maximum value was considered the half-peak 
latency. The first time point at which the GRABDA3h signal fell below 
the half-maximum value after the offset of the light stimulation was 
considered the half-decay latency.

Behavioural analysis
Mouse behaviours were recorded from both the top and the side using 
two synchronized cameras (Basler, acA640-120um) and commercial 
video acquisition software (Norpix, StreamPix 8) in a semi-dark room 
with infrared illumination at a frame rate of 25 frames per second. 
Mouse behaviours were automatically annotated using SimBA58 and 
then refined by an experienced annotator who might or might not 
be blind to the group identity. ‘Baseline’ is defined as the 120 s right 
before introducing the male intruder into the home cage of the test 
mice. ‘Intruder entry’ was defined as the first 60 s after a freely moving 

or cupped male mouse was introduced into the home cage of the test 
mouse. ‘Investigate’ was defined as close contact with any part of the 
intruder’s body. ‘Attack’ was defined as a suite of intense actions aim-
ing at biting the intruders, including push, lunge, bite, tumbling and 
fast locomotion episodes between these movements. ‘Mount’ was 
defined as when the male grasped and mounted the female’s flanks. 
‘Intromit’ includes both rapid thrust against the female’s rear and deep 
rhythmic thrust.

In vitro electrophysiological recording
For in vitro whole-cell patch-clamp recordings, mice were anaesthe-
tized with isoflurane and perfused with 15 ml ice-cold cutting solu-
tion containing 110 mM choline chloride, 25 mM NaHCO3, 2.5 mM KCl, 
7 mM MgCl2, 0.5 mM CaCl2, 1.25 mM NaH2PO4, 25 mM glucose, 11.6 mM 
ascorbic acid and 3.1 mM pyruvic acid. Then, the brains were removed 
and submerged in ice-cold cutting solution. Coronal sections (275 µm) 
were cut using the Leica VT1200s vibratome and incubated in artifi-
cial cerebral spinal fluid (ACSF) containing 125 mM NaCl, 2.5 mM KCl, 
1.25 mM NaH2PO4, 25 mM NaHCO3, 1 mM MgCl2, 2 mM CaCl2 and 11 mM 
glucoses at 34 °C for 30 min and then at room temperature until use.

The intracellular solution for current-clamp recording contained 
126 mM K-gluconate, 4 mM KCl, 10 mM HEPES, 4 mM Mg-ATP, 0.3 mM 
Na2-GTP and 10 mM phosphocreatine (pH adjusted to 7.2 with KOH). 
The intracellular solution for the voltage-clamp recording contained 
135 mM CsMeSO3, 10 mM HEPES, 1 mM EGTA, 3.3 mM QX-314 (chloride 
salt), 4 mM Mg-ATP, 0.3 mM Na-GTP and 8 mM sodium phosphocre-
atine (pH 7.3 adjusted with CsOH). The signals were acquired using the 
MultiClamp 700B amplifier (Molecular Devices) and Clampex 11.0 soft-
ware (Axon Instruments), and digitized at 20 kHz using DigiData1550B 
(Molecular Devices). The recorded electrophysiological data were ana-
lysed using Clampfit (Molecular Devices) and MATLAB (MathWorks).

VTADAT terminal stimulation and drug perfusion only started after the 
cell reached a stable state, typically 3 min after breaking into the cell.

To determine the effect of dopamine on dLS cell membrane poten-
tial, we performed current-clamp recordings. For the VTADAT terminal 
activation, we patched on randomly selected dLS neurons and delivered 
200-ms, 589 nm light pluses (CoolLED, pE-300 white) five times with 
20-s inter-pulse intervals. If a cell showed light-evoked slow IPSP, we 
bath-applied sulpiride (10 μM, Tocris, 0895) for a minimum of 5 min 
and then repeated the light stimulation. To determine whether slow 
IPSP occurred, we calculated the mean and standard deviation (s.d.) of 
the membrane potential −1 to 0 s before the light onset and the average 
membrane potential 1–2 s after light onset. If the post-light mean mem-
brane potential was two standard deviations below the baseline, the 
cell was considered to be hyperpolarized by the light stimulation. The 
slow VTA dopamine terminal stimulation evoked IPSP amplitude was 
calculated as the difference between the average membrane potential 
1–2 s after light and −1–0 s before light. For bath applications of dopa-
mine (100 μM, Tocris, 3548), sulpiride (10 μM, Tocris, 0895) + dopa-
mine (100 μM), sumanirole (1 μM, Tocris, 2773) or sulpiride (10 μM), we 
patched randomly selected dLS cells, recorded for 3 min to establish a 
baseline and then perfused the drug for at least 5 min. We then calcu-
lated the change in membrane potential amplitude as the difference 
between the mean membrane potential 2–3 min after drug perfusion 
and that −2–0 min before the drug perfusion. If the change in membrane 
potential amplitude was below −2 × s.d. of the membrane potential 
during the pre-drug period, the cell was considered hyperpolarized.

To examine the effect of VTADAT terminal stimulation on sIPSCs and 
sEPSCs, we performed voltage-clamp recording. The dLS cells were held 
at +0 mV (sIPSCs) or −70 mV (sEPSCs) for 65 s to establish a baseline. We 
then delivered 30-Hz, 1-ms, 589-nm light for 5 min at 30 Hz to activate 
VTADAT terminals and recorded for 5 min afterwards.

To examine the effect of the D2 agonist on sIPSCs, we patched onto 
D2R-expressing neurons in the dLS on the basis of their EYFP expres-
sion, held the cells at +0 mV and recorded for 65 s. We then added 1 μM 



sumanirole into the bath solution, waited for 10 min and recorded for 
2 min. To record mIPSCs, we added TTX (1 µM, Tocris, 1078) into the 
bath solution.

To record sEPSCs, we patched on D2R-expressing neurons in the 
dLS on the basis of their EYFP expression, held the cells at −70 mV and 
recorded for 65 s. To record mEPSCs, we added TTX (1 µM, Tocris, 1078) 
into the bath solution.

To investigate the intra-dLS connection, we patched onto ChR2-EYFP 
negative cells, held the cells at +0 mV, delivered brief blue light pulses 
(0.3 ms, five times, 20-s intervals), and recorded light-evoked IPSCs. We 
then applied 1 μM sumanirole for 10 min, and recorded the light-evoked 
IPSCs of the same cell again.

To investigate the dLSDrd2 cell response to the CA2/3 inputs, we per-
formed current-clamp recording of Drd2-positive cells on the basis 
of their mCherry expression. During the recording, we delivered a 
single light pulse or a train of five light pulses (1 mW, 0.3 ms, 470 nm) 
at frequencies of 1, 5 and 10 Hz, each three times with a 20-s inter-train 
interval. We then applied 1 μM sumanirole or vehicle ACSF for 10 min 
and recorded the light-evoked spiking activities again using the same 
stimulation protocols. The post-spiking IPSP amplitude was calculated 
as the average membrane potential 0.2–0.7 s after light stimulation 
minus the average potential −1–0 s before light onset. The spiking prob-
ability was calculated as the number of light-evoked spikes divided by 
the number of light pulses.

To examine the effect of VTADAT terminal activation on dLS cell 
responses to excitatory inputs from CA2/3, we performed current-clamp 
recording of randomly selected dLS cells in the vicinity of VTADAT fluo-
rescent terminals before and after sham or 589 nm light stimulation 
of VTADA terminals (5 min, 30 Hz, 1 ms).

Immunohistochemistry and imaging analysis
For histological analysis, mice were deeply anaesthetized and perfused 
with PBS followed by 4% PFA. After perfusion, brains were collected, 
post-fixed in 4% PFA overnight at 4 °C and then cryoprotected in 20% 
(w/v) sucrose for 24 h. The brains were then embedded in OCT com-
pound and sectioned into 60-μm-thick slices using a CM1900 cryostat 
(Leica). EYFP, EGFP and GRABDA3h were immunostained using a chicken 
anti-GFP antibody (1:1,000, Abcam, ab13970) followed by an Alexa 
488-conjugated donkey anti-chicken secondary antibody (1:1,000, Jack-
son ImmunoResearch, 703-545-155). mCherry and oScarlet were stained 
using a rabbit anti-dsRed antibody (1:1,000, Takara, 632496) followed 
by a Cy3-conjugated donkey anti-rabbit secondary antibody (1:1,000, 
Jackson ImmunoResearch, 711-165-152). TH cell body was stained with a 
sheep anti-TH primary antibody (1:750, Pel Freeze, P60101-0), followed 
by applying an Alexa 488-conjugated donkey anti-sheep secondary 
antibody (1:1,000, Jackson ImmunoResearch, 713-545-147). TH termi-
nals were stained with a rabbit anti-TH primary antibody (1:500, EMD 
Millipore, AB152), followed by a Cy3-conjugated donkey anti-rabbit 
secondary antibody (1:1,000). FOS was immunostained using a 
guinea pig anti-FOS antibody (1:1,000, SYSY, 226308) followed by a 
Cy3-conjugated donkey anti-guinea pig secondary antibody (1:1,000, 
Jackson ImmunoResearch, 706-165-148). Brain slices were incubated 
in the primary antibody at 4 °C for 48 h, followed by a similar incuba-
tion period with the secondary antibody. In addition, DAPI (1:20,000, 
Thermo Fisher Scientific, D1306) was included with the secondary anti-
body for nuclear visualization. The fluorescence images were acquired 
with a virtual slide microscope (Olympus, VS120) with a 10× objective 
or a confocal microscope (Zeiss LSM 510 or 700 microscope).

To count the infected cells in the VTA and SNc, we outlined the VTA 
and SNc bilaterally on the basis of the DAPI straining, and exported 
the channel containing mCherry (chemogenetic group) or EGFP (TH 
mutagenesis group) using Fiji. The image contrast was kept the same 
across different samples. Cells were manually counted on the basis 
of cell morphology and relative brightness to the background by a 
researcher who was blinded to the treatment, using the Fiji cell counter.

For TH staining quantification, the brain sections containing NAcs 
(Bregma 0.98 mm) and dLS (Bregma 0.14 mm) from each mouse 
were selected for analysis. The channel containing the TH signal was 
extracted for each image. All images have a set intensity range of 50 
to 3,000 before exporting to PNG format. The NAcs, dLS and corpus 
callosum in the same images were manually cropped to calculate the 
median TH fluorescence intensity.

For FOS quantification, the brain sections containing VTA (Bregma 
−3.16 mm) from each mouse were selected for analysis. VTA was out-
lined on the basis of TH and DAPI staining from the original images using 
Fiji. FOS counting results were obtained using the Cellpose 1.0 GUI59, 
in which automatic segmentation was performed on the basis of the 
size of signal spots (5 pixels, flow threshold 0.7, cellprob threshold 0),  
followed by manual correction without any previous knowledge regard-
ing the source of the images.

RNAscope in situ hybridization
Wild-type group-housed male mice were first single-housed for two 
weeks and then tested for aggression using RI tests with BC male intrud-
ers. For the novice aggressor group, the mice were perfused on the 
day after the first aggressive RI test. For the expert aggressor group, 
the mice were subjected to daily winning in RI tests for eight consecu-
tive days and then perfused the day after the last RI test. Immediately 
after perfusion, their brains were collected and embedded in OCT 
compound on dry ice. The brains were then sectioned into 20-μm-thick 
slices using a CM1900 cryostat (Leica) and mounted onto the slides 
(Fisher, 1255015). Slides containing dLS were fixated (15 min, 4% PFA) 
and dehydrated (50%, 70% and 100% ethanol, 5 min each). We did not 
treat the section with protease IV to ensure the integrity of the brain 
sections. We then used Mm-Drd2-C2 probe (ACD, 406501-C2) and 
RNAscope Fluorescent Multiplex Reagent Kit v1 (ACD, 320851) to detect 
Drd2 mRNA following the standard protocol from the manufacturer 
(ACD). The sections were then imaged using a virtual slide microscope 
(Olympus, VS120) using a 20× objective. The Drd2 signals were quanti-
fied using ImageJ.

Statistics and reproducibility
No statistical methods were used to predetermine sample sizes, but 
our sample sizes are similar to those reported in previous publica-
tions24,60–63. All experiments were conducted using one to four cohorts 
of mice. For functional and in vivo recording experiments, histology 
images were collected from all mice. For slice recording experiments, 
histology images were collected only from a subset of mice, although 
the correct virus expression was always confirmed during the recording 
according to the fluorescence protein expression. Histology images are 
representative and qualitatively similar to images from other animals. 
The results were reproducible across cohorts and combined for final 
analysis. Statistical analyses were performed using MATLAB (v.2023a, 
MathWorks) and Prism10 (GraphPad Software). All statistical tests 
were two-tailed. Data were tested for normality first using the Shap-
iro–Wilk test. If all data points were normally distributed, paired t-tests, 
unpaired t-tests, ordinary one-way ANOVA with Tukey’s post hoc test 
and repeated-measures one-way ANOVA with Turkey’s or Dunnett’s post 
hoc test were performed. If data points in one or more groups were not 
normally distributed, Mann–Whitney test, Wilcoxon matched-pairs 
signed-rank test, Kruskal–Wallis test with Dunn’s multiple compari-
sons test and Friedman test with Dunn’s multiple comparison post 
hoc test were performed. For comparing values across two categorical 
variables, we performed ordinary two-way ANOVA with Bonferroni’s 
multiple comparison post hoc test for between-group comparisons and  
Turkey’s multiple comparison post hoc test for within-group com-
parisons and repeated-measures two-way ANOVA with Turkey’s or 
Bonferroni’s multiple comparison test for matched data. In these 
cases, normality was not formally tested. To compare the effect of 
TH mutagenesis and VTADAT terminal lesion between test groups, 
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Fisher’s exact test and Fisher’s exact test followed by the two-stage 
linear step-up procedure of Benjamini, Krieger and Yekutieli FDR cor-
rection (FDR = 0.05) were performed. To compare the effectiveness of 
treatment on the percentage of mice that showed aggression, McNe-
mar’s test was applied when permitted. Details of each statistical test, 
including exact P values, F values, t values, degrees of freedom and 
cohort numbers, can be found in Supplementary Table 1. All error bars 
or error shades represent ±s.e.m. All P values equal to or smaller than 
0.05 are indicated in the figures.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Behavioural annotations, tracking, fibre photometry, slice electro-
physiology and raw representative histology images can be downloaded 
from Zenodo (https://doi.org/10.5281/zenodo.13937311)64. Behaviour 
videos and additional histology images are available from the corre-
sponding authors upon reasonable request. They are not deposited 
to a public database owing to their large size and the size limitation 
of online repositories. Illustrations of the coronal brain sections are 
based on images from the Allen Brain Reference Atlas (https://atlas.
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dLS dopamine lesion blocks aggression increase in naive males
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Extended Data Fig. 6 | VTADAT stimulation induces different patterns of 
dopamine release at the dLS and at the NAcc. a–c, Experimental designs 
(a,b), and timeline (c) to stimulate the VTADAT cells and record the dopamine 
signal at the dLS or NAcc. d,e, PETHs of GRABDA3h signals (ΔF/F) at the dLS  
(d) and NAcc (e) aligned to the VTADAT light (colour) or sham light (0 mW, grey) 
onset. f, The mean GRABDA3h signal during the 5 s VTADAT stimulation. g, The 
onset of the GRABDA3h response following VTADAT stimulation. h, The latency  
to reach half of the GRABDA3h peak response amplitude following VTADAT 
stimulation. i, The half-decay time of GRABDA3h signal after VTADAT stimulation 
offset. j,k, PETHs of GRABDA3h signal of the dLS aligned to the VTADAT light (colour) 

or sham light (0 mW, grey) onset on the 1st ( j) and 9th days of aggression (k).  
l, The mean GRABDA3h activity of the dLS on the 1st and 9th days of aggression 
during 5 s VTADAT stimulation or sham periods. Each circle and line represents 
one mouse. Lines and shades in d,e and j,k and bars and error bars in f–i and l 
represent mean ± SEM. Numbers inside the parentheses indicate the number  
of subject mice. f,h, unpaired t-test; g,i, Mann–Whitney test; l, RM two-way 
ANOVA followed by multiple comparison tests with Bonferroni’s correction. All 
tests are two-sided. All p values ≤ 0.05 are indicated. See Supplementary Table 1 
for statistical details.
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Extended Data Fig. 8 | Acute stimulation of VTADAT–dLS terminals or tonic 
activation of VTADAT–NAcs terminals does not change aggressive behaviours 
in novice aggressors. a,b, Experimental design (a) and timeline (b) to determine 
the acute effect of VTADAT – dLS terminal stimulation on aggression.  
c, Behavioural raster of a representative mouse during the 20 s sham (0 mW) 
and light (4 mW) trials. d–f, The attack probability (d), attack duration (e) and 
latency to attack (f) during the 20 s light or sham stimulation periods. g, Heat 
maps illustrating the body centre distribution of an example mouse during the 
baseline and light-pairing periods when VTADAT – dLS terminals are activated in 
one pre-selected chamber. h, Time spent in the light-paired chamber during the 
10-min baseline and 10-min light-pairing periods. i, Experimental design and 
timeline to quantify FOS expression after tonic stimulation of VTADAT terminals 
at the dLS. j, Representative images showing FOS (red) and EYFP (left, green), or 
ChR2 (right, green), expression in the VTA. White arrows highlight example FOS 
positive cells. k, The number of FOS positive cells in the VTA of EYFP and ChR2-
expressing mice. l, Experimental schematics and representative histology 

images showing ChR2 cells in the VTA and their terminals in the NAc. The white 
arrows indicate the fibre tracks. m, Experimental timeline to evaluate the  
effect of tonic activation of VTADAT – NAcs terminals on aggression. n–q, The 
percentage of mice that attacked (n), attack duration (o), latency to attack  
(p) and investigation duration (q) of novice aggressors on sham and light-
stimulated days. r, Heat maps illustrating the body centre distribution of an 
example mouse during the baseline and light-pairing period when VTADAT – 
NAcs terminals are activated in one pre-selected chamber. s, Time spent in the 
light-paired chamber during 10 min baseline and 10 min light-pairing periods. 
Each line represents one mouse. Bars and error bars represent mean ± SEM. 
Numbers inside the parentheses indicate the number of subject mice.  
d–f,h, RM two-way ANOVA followed by multiple comparison tests with 
Bonferroni’s correction; k, unpaired t-test; n, McNemar’s test; o,q,s, paired 
t-test; p, Wilcoxon matched-pairs signed-rank test. All tests are two-sided. All  
p values ≤ 0.05 are indicated. See Supplementary Table 1 for statistical details.



Article

-15

-10

-5

0

5

DA
Sul+DASUM

<0.001

ΔM
em

br
an

e 
Po

te
nt

ia
l (

m
V)

(35)(12) (14)

0.004
<0.001

(12)

Sul

dLSWT

b

dLS

500 μm

2min

10m
V

SUM 1µM

DA 100µM

Sul 10µM

Sul 10µM
-80

-60

-40

-20

0

R
M

P 
(m

V)

DA 100µM

Novice
DA 100µM

Expert
Novice 530

1419

0.0145

e

(35) (33)

Hyperpolarized
No Resp.

Novice Expert

Expert

SH
3 wk

SH
2 wk

Agg. Training
8-day RITs

Novice

Expert

WT Male

a

SH: single housing

10

DA

(33)

0.001

Novice Expert

c

d

Extended Data Fig. 9 | Aggression experience diminishes the dopamine- 
induced hyperpolarization of dLS cells. a, Experimental timeline and 
schematics showing current-clamp recording of dLS cells in response to 
dopamine application and a representative image of the recorded lateral 
septum slice and a recording glass pipette. b, Left: Representative current- 
clamp recording traces of dLSWT cells of novice aggressors after bath application 
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Right: A representative trace of a dLSWT cell of an expert aggressor after 
applying dopamine. c, Distribution of dLSWT cell responses to dopamine in 
novice and expert aggressors. d, The membrane potential change of dLSWT 

cells (difference between 2–3 min and -2–0 min of drug perfusion) after bath 
application of various drugs in novice and expert aggressors. e, The resting 
membrane potential (RMP) of dLSWT cells in novice and expert aggressors. Each 
dot represents one cell. Bars and error bars represent mean ± SEM. Numbers 
inside the parentheses or bars indicate the number of recorded cells. c, Fisher’s 
exact test; d, Ordinary one-way ANOVA followed by multiple comparison tests 
with Tukey’s correction and Mann–Whitney test between novice and expert 
aggressors; e, Mann–Whitney test. All tests are two-sided. All p values ≤ 0.05 
are indicated. See Supplementary Table 1 for statistical details.
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Extended Data Fig. 10 | Effects of VTADAT terminal activation and aggression 
experience on excitatory synaptic transmission of dLS cells. a, Schematics 
showing voltage-clamp recording of dLSWT cell responses to VTADAT inputs and 
the light stimulation protocol. b, Representative sEPSC traces of a dLS cell 
before (top) and after (bottom) the 5-min light stimulation. c,d, The amplitude 
(c) and frequency (d) of sEPSCs before and after light stimulation. e, Schematics 
and experimental timeline showing voltage-clamp recording of dLSDrd2 cells.  
f, Representative sEPSC traces of example dLSDrd2 cells from novice (top) and 
expert (bottom) aggressors. g,h, The amplitude (g) and frequency (h) of sEPSCs 

in novice and expert aggressors. i, Representative mEPSC traces of dLSDrd2 cells 
from novice (top) and expert (bottom) aggressors. j,k, The amplitude ( j) and 
frequency (k) of mEPSCs in novice and expert aggressors. Each line or circle 
represents one cell. Bars and error bars represent mean ± SEM. Numbers inside 
the parentheses indicate the number of recorded cells. c,d, Friedman test 
followed by multiple comparison tests with Dunn’s correction. g–h,j–k, Mann–
Whitney test. All tests are two-sided. All p values ≤ 0.05 are indicated. See 
Supplementary Table 1 for statistical details.
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